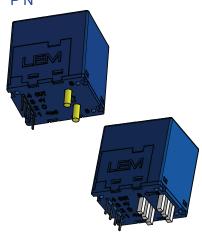


Current Transducer HXN 03 ... 50-P series

For the electronic measurement of currents: DC, AC, pulsed..., with galvanic separation between the primary circuit and the secondary circuit



Ele	ctrical d	lata			
current		Primary current measuring range	Primary con diameter × t		уре
	$I_{PN}(A)$	$I_{PM}\left(A\right)$	(mm)		
	3	±9	0.6d × 20T	Н	XN03-P
	5	±15	0.8d × 12T	Н	XN05P
	10	±30	1.1d × 6T		XN10-P
	15	±45	1.4d × 4T		XN15P
	20	±60	1.6d × 3T		XN20-P
	25	±75	1.6d × 2T		XN25P
	30	±75	1.6d × 2T		XN30-P
	50	±150	1.2d × 6.3 ×	11 H	XN 50-P
U_{out}	Output vol	tage (Analog) @ ±I _{PN} , R _L =	10 kΩ, T _a = 25 °C	±4	V
R_{out}		ternal resistance	, A	< 50	Ω
$R_{_{ m I}}$	Load resi			≥ 10	kΩ
U_{C}		oltage (±5 %) 1)		±15	V
$I_{\rm c}$		consumption		< ±15	mA
		Dynamic performa	ance data	1210	1117 (
AU					
ε		$T_{\rm PN}, R_{\rm L} = 10 \text{ k}\Omega, T_{\rm A} = 25 \text{ s}$	°C	≤ ±1	% of $I_{\rm PN}$
$arepsilon_{L}$		error (0 ±I _{PN})		≤ ±1	% of $I_{\scriptscriptstyle \sf PN}$
U_{OE}		offset voltage, @ $I_p = 0$, $T_A = 25 ^{\circ}\text{C}$	< ±40	mV
U_{OM}		offset voltage @ $I_P = 0$ excursion of $1 \times I_{PN}$		< 15 (Typ)	mV
TCU_{OF}		ture of coefficient of U_{OB}	maximum	< ±1.5	mV/K
TCU_{out}		ture of coefficient of $U_{ m out}$		±0.1	%/K
		ne to 90 % of the output			
$t_{D 90}$ BW		re to 90 % of the output by bandwidth (−3 dB) ³⁾	value for I _{PN} Step 7	<u>≤</u> 3	μs kHz
	•	, ,			IN IZ
Ge	neral da	ta			
T_{A}	Ambient	operating temperature		-25 +85	°C
T_{Ast}	Ambient	storage temperature		-40 +85	°C
m	Mass			8	g
	Standard			EN 50178:	_

Notes: 1) Also operate at ±12 V power supplies, measuring range reduced to ±2.5 × $I_{\tiny \rm D.M.}$

- ²⁾ For a di/dt = 50 A/µs
- ³⁾ Small signal only to avoid excessive heating of the magnetic cores.

Features

- · Hall effect measuring principle
- Low power consumption
- Insulating plastic case recognized according to UL 94-V0.

Advantages

- Low insertion losses
- Easy mount with automatic handling system
- Small size and space saving
- Only one design for wide current ratings range
- High immunity to external interference.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Electrical appliances.

Application domain

• Industrial.

Current Transducer HXN 03 ... 50-P series

Insulation coordination					
U_{d}	RMS voltage for AC insulation test, 50 Hz, 1 min	> 3	kV		
U_{t}	Partial discharge RMS test voltage (q_m < 10 pC)	≥ 1	kV		
U_{Ni}	Impulse withstand voltage 1.2/50 μs	≥ 6	kV		
		Min			
d_{Cp}	Creepage distance	5.5	mm		
$d_{ extsf{Cp}} \ d_{ extsf{Cl}}$	Clearance	5.5	mm		
CTI	Comparative Tracking Index (group I)	600			

Applications examples

According to EN 50178 and IEC 61010-1 standards and following conditions:

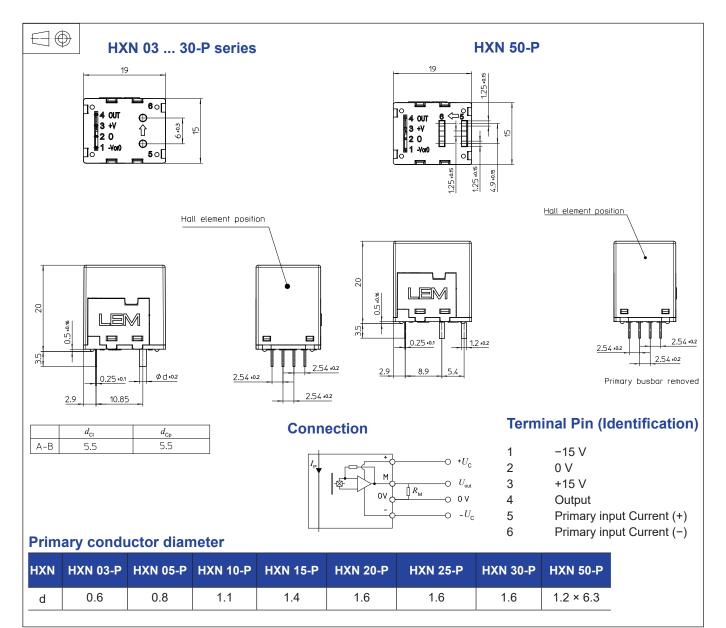
- Over voltage category OV 3
- Pollution degree PD2
- Non-uniform field

	EN 50178	IEC 61010-1
$\overline{d_{\rm Cp},d_{\rm Cl},U_{\rm Ni}}$	Rated insulation voltage	Nominal voltage
Basic insulation	600 V	600 V
Reinforced insulation	300 V	150 V

Safety

This transducer must be used in limited-energy secondary circuits according to IEC 61010-1.

This transducer must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the manufacturer's operating instructions.


Caution, risk of electrical shock

When operating the transducer, certain parts of the module can carry hazardous voltage (eg. primary busbar, power supply). Ignoring this warning can lead to injury and/or cause serious damage.

This transducer is a build-in device, whose conducting parts must be inaccessible after installation. A protective housing or additional shield could be used. Main supply must be able to be disconnected.

Dimensions HXN 03 ... 50-P series (in mm)

Mechanical characteristics

- General tolerance
- · Connection of secondary

±0.5 mm 4 pins 0.5 × 0.25 mm

Remarks

- U_{out} is positive when I_{P} flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100 °C.
- Please do not apply any extra forces to both primary and secondary terminals when mounting onto printed circuit board. Insertion forces apply to HXN 50-P primary terminal should be limited to below 10 N.
- This is standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.