

Quad 2–Input NOR Gate

High-Performance Silicon-Gate CMOS

FEATURES

- Output Drive Capability: 10 LSTTL Loads
- Outputs Directly Interface to CMOS, NMOS, and TTL
- Operating Voltage Range: 2.0 to 6.0 V
- Low Input Current: 1.0 A
- High Noise Immunity Characteristic of CMOS Devices
- In Compliance with the Requirements Defined by JEDEC Standard No. 7A
- ESD Performance:

HBM 2000 V;

Machine Model 200 V

- Chip Complexity: 40 FETs or 10 Equivalent Gates
- These are Pb-Free Devices

ORDERING INFORMATION

DEVICE	Package Type	MARKING	Packing	Packing Qty
74HC02PG	DIP-14	74HC02	TUBE	1000pcs/box
74HC02DRG	SOP-14	74HC02	REEL	2500pcs/reel
74HC02DRG4	SOP-14	74HC02	REEL	4000pcs/reel
74HC02PWRG	TSSOP-14	HC02	REEL	2500pcs/reel

LOGIC DIAGRAM

FUNCTION TABLE

Inp	puts Output			
Α	В	Y		
L	L	Н		
L	Н	L		
Н	L	L		
Н	Н	L		

PIN ASSIGNMENT

Y1 [1 •	14	v _{cc}
A1 [2	13] Y4
в1 🛙	3	12] в4
Y2 [4	11	D A4
A2 [5	10] Y3
B2 [6	9	Вз
GND [7	8	🛛 АЗ

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vcc	DC Supply Voltage (Referenced to GND)	- 0.5 to + 7.0	V
Vin	DC Input Voltage (Referenced to GND)	- 0.5 to VCC + 0.5	V
Vout	DC Output Voltage (Referenced to GND)	- 0.5 to VCC + 0.5	V
lin	DC Input Current, per Pin	20	mA
lout	DC Output Current, per Pin	25	mA
ICC	DC Supply Current, VCC and GND Pins	50	mA
PD	Power Dissipation in Still Air, SOP Package TSSOP Package	500 450	mW
T _{stg}	Storage Temperature	– 65 to + 150	°C
TL	Lead Temperature, 1 mm from Case for 10 Seconds SOP or TSSOP Package	245	°C

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance cir- cuit. For proper operation, Vin and Vout should be constrained to the range $GND \le (Vin \text{ or } Vout) \le VCC$. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or VCC).Unused outputs must be left open.

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not im- plied. Extended exposure to stresses above the Recommended Operating Conditions may af- fect device reliability.

Derating SOP Package: 7 mW/°C from 65° to 125°C ; TSSOP Package: 6.1 mW/°C from 65° to 125°C

RECOMMENDED OPERATING CONDITIONS

Symbol	Paramet	Min	Max	Unit	
VCC	DC Supply Voltage (Referenced to GND	2.0	6.0	V	
Vin, Vout	DC Input Voltage, Output Voltage (Refe	0	VCC	V	
TA	Operating Temperature, All Package Typ	-40	+ 85	°C	
tr, tf	Input Rise and Fall Time(Figure 1)	VCC = 2.0 V VCC = 4.5 V VCC = 6.0 V	0 0 0	1000 500 400	ns

DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)

			Vcc	Gua	ranteed L	.imit	
Symbol	Parameter	Test Conditions	(V)	-40 to 25°C	≤85°C	≤125°C	Unit
			2.0	1.5	1.5	1.5	
VIH	Minimum High-Level Input	Vout = 0.1 V or VCC – 0.1 V	3.0	2.1	2.1	2.1	V
*111	Voltage	lout ≤ 20 μA	4.5	3.15	3.15	3.15	v
			6.0	4.2	4.2	4.2	
			2.0	0.5	0.5	0.5	
VIL	Maximum Low-Level Input	Vout = 0.1 V or VCC – 0.1 V	3.0	0.9	0.9	0.9	V
• 12	Voltage	lout ≤ 20 μA	4.5	1.35	1.35	1.35	v
			6.0	1.8	1.8	1.8	
	VOH Minimum High-Level OutputVoltage	Vin = VIH or VIL	2.0	1.9	1.9	1.9	
		lout ≤20 μA	4.5	4.4	4.4	4.4	
		$ 1001 \le 20 \mu R$	6.0	5.9	5.9	5.9	
Vон		Vin = VIH or VIL $ I_{out} \le 2.4$ mA	3.0	2.48	2.34	2.20	V
		l _{out} ≤ 4.0 mA	4.5	3.98	3.84	3.7	
		$ I_{out} \le 5.2 \text{ mA}$	6.0	5.48	5.34	5.2	
		Vin = VIH or VIL	2.0	0.1	0.1	0.1	
		$ I_{out} \le 20 \ \mu A$	4.5	0.1	0.1	0.1	
	Maximum Low-Level	$ 10001 \le 20 \mu A$	6.0	0.1	0.1	0.1	
VOL	OutputVoltage	Vin = VIH or VIL l _{out} ≤ 2.4 mA	3.0	0.26	0.33	0.4	V
		lout ≤ 4.0 mA	4.5	0.26	0.33	0.4	
		lout ≤ 5.2 mA	6.0	0.26	0.33	0.4	
lin	Maximum Input Leakage Current	Vin = VCC or GND	6.0	0.1	1.0	1.0	μA
ICC	Maximum Quiescent SupplyCurrent (per Package)	Vin = VCC or GND lout = 0 μΑ	6.0	2.0	20	40	μA

AC ELECTRICAL CHARACTERISTICS (CL = 50 pF, Input tr = tf = 6.0 ns)

		Vcc	Gua				
Symbol	Parameter	(V)	-40 to 25°C	≤85°C	≤125°C	Unit	
		2.0	75	95	110		
tPLH,	Maximum Propagation Delay, Input A or B to Output Y	3.0	30	40	55	na	
^t PHL	(Figures 1 and 2)	4.5	15	19	22	ns	
		6.0	13	16	19		
		2.0	75	95	110		
tTLH,	Maximum Output Transition Time, Any Output	3.0	30	40	55		
tthl	(Figures 1 and 2)	4.5	15	19	22	ns	
		6.0	13	16	19		
Cin	Maximum Input Capacitance		10	10	10	pF	

CPD	Power Dissipation Capacitance (Per Gate)*	Typical @ 25 C, VCC = 5.0 V	۳Ē
OFD	Power Dissipation Capacitance (Per Gate)	22	р⊢

Q

PHYSICAL DIMENSIONS

SOP-14

Dimensions In Millimeters(SOP-14)												
Symbol:	А	A1	В	С	C1	D	Q	а	b			
Min:	1.35	0.05	8.55	5.80	3.80	0.40	0°	0.35	1.27 BSC			
Max:	1.55	0.20	8.75	6.20	4.00	0.80	8°	0.45	1.27 030			

TSSOP-14

Dimensions In Millimeters(TSSOP-14)												
Symbol:	A	A1	В	С	C1	D	Q	а	b			
Min:	0.85	0.05	4.90	6.20	4.30	0.40	0°	0.20	0.65.000			
Max:	0.95	0.20	5.10	6.60	4.50	0.80	8°	0.25	0.65 BSC			

PHYSICAL DIMENSIONS

DIP-14

Dimensions In Millimeters(DIP-14)											
Symbol:	A	В	D	D1	Е	L	L1	а	с	d	
Min:	6.10	18.94	8.10	7.42	3.10	0.50	3.00	1.50	0.40	2.54 BSC	
Max:	6.68	19.56	10.9	7.82	3.55	0.70	3.60	1.55	0.50	2.54 850	

REVISION HISTORY

REVISION NUMBER	DATE	REVISION	PAGE
V1.0	2019-5	New	1-9
V1.1	2023-8	Update Lead Temperature、Update encapsulation type	1、3

IMPORTANT STATEMENT:

Hanschip Semiconductor reserves the right to change its products and services without notice. Before ordering, the customer shall obtain the latest relevant information and verify whether the information is up to date and complete. Hanschip Semiconductor does not assume any responsibility or obligation for the altered documents.

Customers are responsible for complying with safety standards and taking safety measures when using Hanschip Semiconductor products for system design and machine manufacturing. You will bear all the following responsibilities: select the appropriate Hanschip Semiconductor products for your application; Design, validate and test your application; Ensure that your application meets the appropriate standards and any other safety, security or other requirements. To avoid the occurrence of potential risks that may lead to personal injury or property loss.

Hanschip Semiconductor products have not been approved for applications in life support, military, aerospace and other fields, and Hanschip Semiconductor will not bear the consequences caused by the application of products in these fields. All problems, responsibilities and losses arising from the user's use beyond the applicable area of the product shall be borne by the user and have nothing to do with Hanschip Semiconductor, and the user shall not claim any compensation liability against Hanschip Semiconductor by the terms of this Agreement.

The technical and reliability data (including data sheets), design resources (including reference designs), application or other design suggestions, network tools, safety information and other resources provided for the performance of semiconductor products produced by Hanschip Semiconductor are not guaranteed to be free from defects and no warranty, express or implied, is made. The use of testing and other quality control technologies is limited to the quality assurance scope of Hanschip Semiconductor. Not all parameters of each device need to be tested.

The documentation of Hanschip Semiconductor authorizes you to use these resources only for developing the application of the product described in this document. You have no right to use any other Hanschip Semiconductor intellectual property rights or any third party intellectual property rights. It is strictly forbidden to make other copies or displays of these resources. You should fully compensate Hanschip Semiconductor and its agents for any claims, damages, costs, losses and debts caused by the use of these resources. Hanschip Semiconductor accepts no liability for any loss or damage caused by infringement.