

一、 概述

FM5324HJ1 是一款应用于移动电源,集成了锂电池充电管理,电池升压输出,电池电量判断和 LED 电量指示的集成电源管理 IC。

FM5324HJ1 是以开关方式进行充电,包含涓流充电,恒流充电和恒压充电全过程的充电方式,浮充电压精度在全温度范围可达±1%,并且具有充电电流纹波小,充电效率高等优点。

FM5324HJ1 的 DC-DC 升压可达到±1%的精度,可以提供高达 94%以上的升压转换效率,延长电池使用时间。

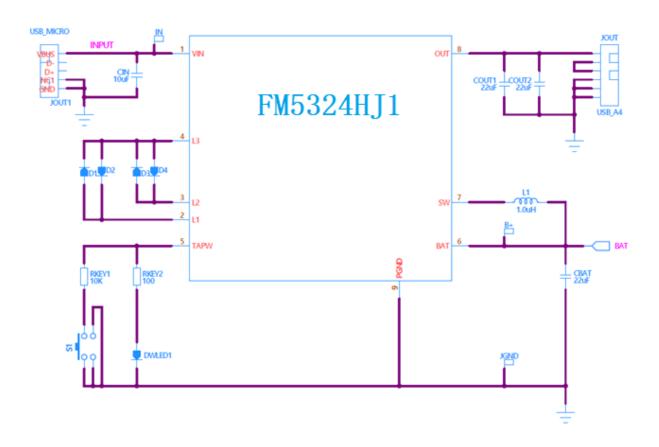
FM5324HJ1 配置了 3 个 LED 驱动端口,可驱动 4 个 LED 显示电池电量,芯片内置逻辑锁定功能,防止电量指示的状态不稳。

FM5324HJ1 具有多重保护设计,包括负载过流保护,软启动保护,输入过压保护,输出短路保护,芯片温度保护,电池温度保护等。同时芯片端口设计了高性能的 ESD 保护电路,使得该款芯片具有极高的可靠性。

FM5324HJ1 配置了自动识别负载功能,检测到负载自动开启升压输出。

FM5324HJ1 目前提供 ESOP8L 的封装形式。

二、产品特点


- ◆ 外围电路简单,无需外部 MOS
- ◆ 可以实现输入端 2.0A@5V 同步开关充电
- ◆ 可以实现 2.4A@5V 同步开关升压输出
- ◆ 低待机电流,约为 60uA
- ◆ 充饱电压可选
- ◆ 软启动功能
- ◆ 涓流、恒流、恒压三段式充电
- ◆ 输入电源掉电电池自动升压供电
- ◆ 整体方案升压最高效率可达 94%@2.4A
- ◆ OUT 输出过流,短路保护
- ◆ 自动检测负载启动功能
- ◆ 空载检测关断功能
- ◆ 输出线补功能
- ◆ 快速充饱功能
- ◆ 多种按键模式可选
- ◆ 可选手电扩流功能
- ◆ 1-4 灯电量显示功能, 多种电量显示方式
- ◆ 多种电量曲线可选
- ◆ 封装形式: eSOP8L

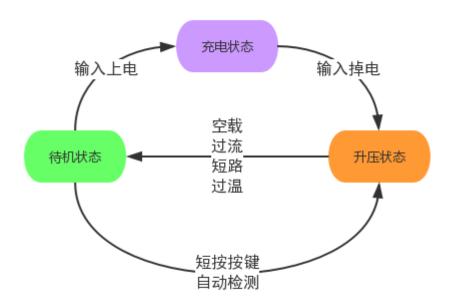
三、应用领域

- ◆ 移动电源
- ◆ 其他便携设备

四、 典型应用电路

五、 引脚示意图及说明

	ESOP8		引脚名	引脚号	功能说明
			VIN	1	电源输入脚
			LED1	2	LED 指示输出 1
VIN	1	8 OUT	LED2	3	LED 指示输出 2
L1	2	7 SW	LED3	4	LED 指示输出 3
	PGND		TAPW	5	按键引脚
L2	3	6 BAT	BAT	6	电池正端检测脚
L3	4	5 TAPW	SW	7	电感驱动脚,功率管漏端
			OUT	8	芯片输出引脚,功率P管源端
			PGND	EP	芯片功率地,功率N管源端


六、 极限参数

SYMBOL	ITEMS	VALUE	UNITS
V_{IN}	输入电压	-0.3~6	V
Vout	输出电压	-0.3~6	V
V_{LED}	LED/LED1 端口电压	-0.3~6	V
TJ	工作结温范围	-20~150	°C
T_{ST}	储存温度	-55~150	°C
Mst	储存湿度	<30%	
T _{LEAD}	引脚焊接温度(10 Sec)	300	°C

七、推荐工作状态

SYMBOL	ITEMS	VALUE	UNITS
V_{IN}	推荐输入电压	4.7~5.5	V
T_OP	推荐工作环境温度	0~50	°C

八、 状态转换图

九、功能描述

SYMBOL	ITEMS	CONDITIONS	MIN	TYP	MAX	UNITS
IQ	待机功耗	V _{BAT} =4.2V,待机模式		55	75	uA
Ron-rev	防反管导通电阻			75		mΩ
Ron-TS	高边 PMOS 导通电阻			35		mΩ
Ron-BS	底边 NMOS 导通电阻			35		mΩ

◆ 充电管理

1. 充电状态

芯片 VIN 电压超过 VUVLO-RS 且 VIN 超过 VBAT 电压 VREV 后, 芯片进入充电状态。

2. 充电功能

芯片采用同步整流开关方式对电池进行涓流、恒流、恒压三段式充电。当电池电压低于 VTRKL 时进行涓流充电;当电池电压高于 VTRKL 时进行恒流充电;当电池电压接近 VBAT-REG 时进行恒压充电,此时充电电流开始逐渐减小,当电流减小到 IFULL 时,判断电池已经充饱,芯片终止充电,待电池电压降低到 VRECHG 后进行再次充电(Recharge)。

3. 充电电流设定(ICHG 功能)

充电电流由输入 VIN 端的限流值 Ivin-chg 决定,当输入供电不足或芯片温度过高时,Ivin-chg 会下降。

4. 充饱电压设定(BDIV 功能)

FM5324HJ1 的子型号可以设定从 4.20V~4.40V 不同的充饱电压值。详见可选功能

5. 充电软启动功能

当电池直接进入恒流充电时,芯片会控制充电电流逐渐增大到设定值,避免了瞬间大电流冲击引起的各种问题。

6. 加速充饱功能

在 VBAT 接近 VBAT-REG 时芯片会略微提高 VBAT-REG 的电压,减少恒压充电时间。

7. 输入过压保护

输入电压过高,超过 VIN-OVP 时,芯片会控制关闭 USB 输出,防止接在 USB 的便携设备因为过压而损坏,输入电压正常后状态解除。

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Icc-chg	芯片工作电流	V _{IN} =5V 充电状态		4.0		mA
Vuvlo-rs	电源欠压门槛	Vin从低到高		4.2		V
$V_{UVLO-DN}$	电你入压 1 / 恒	Vin从高到低		3.5		V
V_{REV}	输入防反门槛 VIN-VBAT	V _{IN} 从低到高		150		mV
V REV	制入例及IJ值 VIN-VBAT	V _{IN} 从高到低		50		mV
V _{TRKL}	涓流转恒流	V _{BAT} 从低到高		3.00		V
V TRKL	迟滞电压	V _{BAT} 从高到低		0.30		V
V _{BAT-REG}	浮充门槛电压		4.16	4.20	4.24	V
I _{FULL}	充电判饱电流	VIN=5.0V		300		mA
VRECHG	复充门槛电压	VBAT 从低到高		4.05		V
V RECHG		VBAT 从高到低		4.00		V

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Ivin-chg	输入端恒流充电电流	VIN=5.0V		2.0		Α
I _{TRKL}	涓流充电电流	V _{BAT} =2.8V		270		mA
		I _{CHG} = I _{VIN-CHG} ·90%		4.69		V
$V_{IN\text{-}LIM}$	输入电压限流点	Ichg = Ivin-chg·50%		4.65		V
		I _{CHG} = I _{VIN-CHG} ·20%		4.64		V
V _{IN-OVP}	输入过压保护电压	输入电压升高		6.0		V
V IN-OVP	迟滞电压	输入电压降低		0.4		V

◆ 升压功能

FM5324HJ1 具有同步整流升压功能,可将单节锂电池电压升压到 5V 输出,给负载供电。电池电压低于 V_{BSTL} 时,芯片系统将判断为电池电量不足,停止升压。当 VIN 电压低于 V_{UVLO-DN} 时,系统将判断为电源适配器掉电,并启动升压电路。

1. 升压软启动功能

芯片有升压软启动功能,在启动升压时,峰值电流会逐渐增大,保证系统工作的稳定。

2. 升压放电功能

待机状态下,单击按键(S1)可启动升压输出。

3. 负载自动检测功能

在待机状态下, 当检测到 OUT 端接入负载, 芯片会控制自动启动升压输出。

4. 充电自动转升压功能

在充电状态下 VIN 端掉电,当 VIN 低于 VUVLO-DN 时,芯片将判断为输入掉电,延时一段时间后自动启动升压输出。

5. 空载检测功能

当输出电流小于 INOLOAD 时且持续 TNOLOADOFF 后,芯片判断外部负载消失,进入待机状态。

6. 低申量提示及低申量关机功能

当电池电压已经低于 VBST-D1F 后,灯 D1 以 FLED-LQWB 频率开始闪烁,表示系统内部电池电量不足,需要充电。电池继续放电,当电压低于 VBST-UVLO 时,升压系统关闭。

7. 输出线补功能

升压时芯片有输出线补功能,即随着输出电流增大,在输出电流增大到限流点之前,输出电压会随之略微提高。

8. 输出限流功能

当负载电流继续增大,增大到 ILOAD-OCP 的大约 90%时,输出电压开始较快下降,限制输出电流。

9. 输出过流保护

当负载电流继续增大,使输出电压低于 VLOAD-OCP,且维持时间超过 TOCP-OFF,则系统启动负载过流保护功能,芯片关闭升压输出,进入待机状态。

10. 输出短路保护

当输出发生短路时,芯片会进入短路判断状态,若短路移除则芯片重新启动升压;若经过Tstp-DLy时间后短路状态仍未解除,则芯片关闭输出进入待机状态。

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
I _{CC-BST}	芯片工作电流	放电状态: VBAT=4.2V, ILOAD=0,指示灯熄灭		3.8		mA

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
V _{OUT-NL}	空载输出电压	I _{OUT} =0		5.10		V
V _{LOAD-OCP}	过流保护电压			4.62		V
I _{LOAD-OCP}	输出过流保护电流			3.0		А
T _{OCP-OFF}	输出过载保护时间		12	14	16	mS
T _{STP-DLY}	短路恢复延迟			1.0		S
T _{LOAD-STP}	输出短路电流检测时间		56	60	64	uS
INOLOAD	空载关机电流			80		mA
TNOLOADOFF	空载关闭升压系统等待时间	ILOAD < INOLOAD	24	32	40	S
V _{BSTL}	升压空载启动最低电压			3.21		V
fosc	振荡器频率			1000		KHz
f_{SW}	开关工作频率			500		KHz
V _{BAT-UVLO}	放电时关机电压			2.90		V

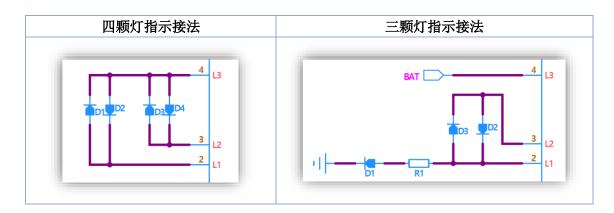
◆ 保护功能

1. 充电时的输出短路保护

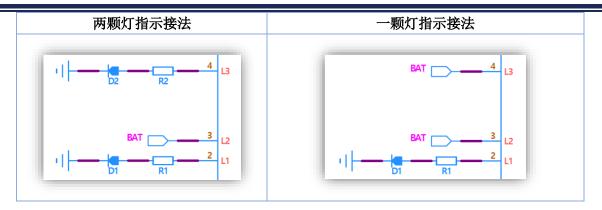
当充电时,输出发生短路,芯片会关闭输出,熄灭电量指示灯;短路解除后,输出会打开,电量指示灯亮起,自动恢复充电。

2. 芯片限温保护

当芯片内部温度超过 TEMP_{OTL} 时,芯片进入限温保护状态:如果在充电,则减小充电电流;如果在升压,则降低输出电压。


3. 芯片过温保护

如果芯片工作时温度超过 TEMP_{OTP},则关闭内部开关 MOS,待温度降低后再恢复工作。


SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
T _{LED-HOLD}	升压电量显示的保持时间			8		S
TEMPotl	芯片限温保护温度			95		°C
TEMP _{OTP}	芯片过温保护温度			135		°C

◆ 指示灯显示方式

1. 灯口接法

2. 四灯显示方式

输入上电后,指示灯会先跑马一次,再正常指示。

状态	电量	D1	D2	D3	D4	频率
	0%~25%	闪烁	灭	灭	灭	1Hz
	25%~50%	常亮	闪烁	灭	灭	1Hz
充电状态	50%~75%	常亮	常亮	闪烁	灭	1Hz
	75%~100%	常亮	常亮	常亮	闪烁	1Hz
	100%	常亮	常亮	常亮	常亮	
	75%~100%	常亮	常亮	常亮	常亮	
	50%~75%	常亮	常亮	常亮	灭	
放电状态	25%~50%	常亮	常亮	灭	灭	
	3%~25%	常亮	灭	灭	灭	
	<3%	闪烁	灭	灭	灭	2Hz

3. 三灯显示方式

状态	电量	D1	D2	D3	频率
	0%~33%	闪烁	灭	灭	1Hz
充电状态	33%~66%	常亮	闪烁	灭	1Hz
兀电仏心	66%~99%	常亮	常亮	闪烁	1Hz
	100%	常亮	常亮	常亮	
	66%~100%	常亮	常亮	常亮	
计由业大	33%~66%	常亮	常亮	灭	
放电状态	3%~33%	常亮	灭	灭	
	<3%	闪烁	灭	灭	2Hz

4. 两灯显示方式

状态	过程	D1	D2	频率
充电状态	充电过程	闪烁	灭	1Hz
兀电仈恋	充满	常亮	灭	
放电状态	放电过程	灭	常亮	

电量低 灭 闪烁 2Hz

5. 一灯显示方式

状态	过程	D1	频率
充电状态	充电过程	闪烁	1Hz
兀电仈芯	充满	常亮	
放电状态	放电过程	常亮	
双电샋心	电量低	闪烁	2Hz

6. 指示灯显示参数

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
I_{LED}	L1-L3 端口输出电流		4	5	6	mA
FLED-CHG	充电时 LED 闪烁频率	单灯闪烁方式	0.9	1	1.1	Hz
T _{LED-ATOFF}	电量灯自动熄灭时间	空载, 按键升压		8		S
F _{LED-LOWB}	电池电量不足 LED 灯闪烁频率		1.8	2	2.2	Hz
V _{BST-D43}	D4 熄灭的 VBAT 电压	放电状态, 空载		3.91		V
V _{BST-D32}	D3 熄灭的 VBAT 电压	放电状态, 空载		3.65		V
V _{BST-D21}	D2 熄灭的 V _{BAT} 电压	放电状态, 空载		3.57		V
V _{BST-D1F}	D1 闪烁的 VBAT 电压	放电状态, 空载		3.36		V

◆ 其它功能

1. 按键和手电控制功能(TAP&WLED)

- 1) 当 RKEY1=10KΩ 时,短按按键 S1 可从待机启动升压
- 2) 当 RKEY1=10KΩ 时,长按按键 S1 为手电筒功能
- 3) 当 RKEY1=10KΩ 时,双击按键 S1 可关闭升压输出
- 4) 当 RKEY1=2KΩ 时, 手电功能被屏蔽, 此时长按无功能

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
V _{TAP} TAP 端口悬空电压	VIN =5V		4.9		V	
V_{TAP}	IAP 垧口念工电压 	VIN =0V, VBAT =4.2V		4.15		V
TTAPSHORT	手动按键短按时间		24	28	32	mS
$T_{TAPLONG}$	手动按键长按时间		1.50	1.75	2.00	S
IWLED	手电口电流驱动能力	V _{BAT} =4.0V		22		mA

2. 其它可选功能

FM5324HJ1 针对用户不同的使用条件,内置了一些可选功能,具体功能情况及索样需求请咨询我司业务及工程人员。

功能	可选功能A	可选功能 B	可选功能C	可选功能 D
按键模式 R _{KEY1} =10KΩ	双击关机,长按开关 手电	双击无功能,长按开 关手电	双击开关手电,长按 关机	双击进入小电流负载检测模式,长按开 关手电
按键模式 R _{KEY1} =2KΩ	双击关机,长按无功能	双击无功能,长按关	双击开关手电,长按 关机	双击进入小电流负载检测模式,长按关机
充饱电压选择	4.20V	4.25V	4.35V	4.40V
电池曲线选择	模式1	模式 2	模式3	模式 4
输出过流保护选择	3.0A	1.5A		
空载检测功能设定	空载检测关机	屏蔽空载关机		
充电输入电流设定	2.0A	1.0A		
手电扩流模式选择	无	有		
支持独立双路方案	无	有		
指示灯显示方式	升压带载后指示灯 亮起,空载 8S 后熄 灭	升压时指示灯一直 亮		
开关工作频率	500KHz	1MHz		

十、 应用说明

1. 电容的选择:

CVIN, CBAT, COUT 电容为滤波电容,可使用陶瓷电容,耐压选择 10V(推荐)或 6.3V。在成本允许的条件下,增大 COUT 和 CBAT 会使系统更加稳定;如果对升压输出纹波要求不高,在保证系统稳定工作且有一定余量前提下,也可略微减小 COUT;如果针对输出更大电流的方案,要将电容值相应增大。任何情况下,选择质量较差的电容都可能会引起整个系统性能下降,使用寿命缩短,甚至无法正常工作,所以请慎重选择电容。

2. 电感 L1 的选择:

推荐使用 1.0uH 的屏蔽电感,也可使用非屏蔽电感降低成本。

3. 升压带载测试:

因为芯片增加了两级短路保护,所以对升压带载测试时有一定要求:

如果输出接大电容负载(某些型号的负载仪电容非常大),有可能误判短路保护。用电压源或模拟电池代替电池测试时,各种型号电源的瞬态响应不同,电源线的阻抗也可能比较大,在升压带 CC 或 CR 负载或者带负载启动时,也有可能出现短路保护的情况。实际应用时,由于接的是电池,CC 或 CR 的情况会改善。一般便携设备输入电容都比较小,同时它们会检测输入电压,如果输入电压不够时不会充电,所以实际移动电源成品给便携设备充电时不会出现误判短路的情况。

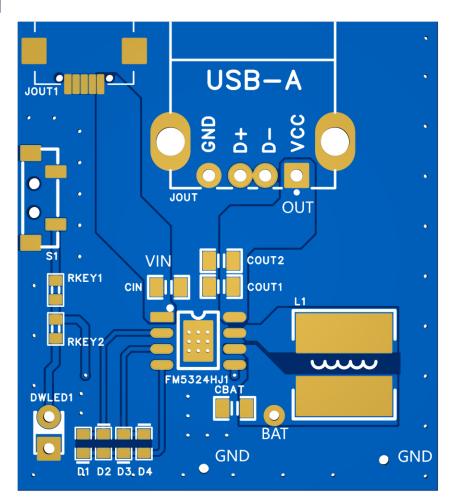
十一、 PCB 布局注意事项

1. 大电流回路

大电流回路指开关时走大电流的器件和走线,在此系统中由 L1, CBAT, COUT 及他们之间的连线构成,他们的布线要尽量宽和短,高频开关(电流不连续)通路不要过通孔,即 L1, CBAT, COUT 必须在 PCB 的同一面放置。

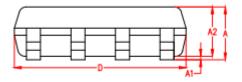
2. OUT和PGND

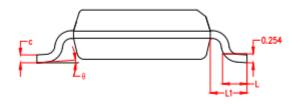
芯片的 OUT 和 PGND 引脚分别是芯片驱动部分的电源和地,在开关工作时会有瞬间大电流流入和流出,因此,画 PCB 时 COUT 要尽量靠近芯片的 OUT 和 PGND 引脚,OUT 和 PGND 分别单独引宽线到 COUT 的正端和负端,中间不能穿过大电流回路,布线尽量宽和短,尽量不要过通孔。COUT 的负端,CBAT 的负端,PGND 尽量靠近,不要过孔。

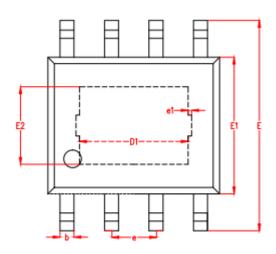

3. 电容的放置

COUT 的负端,CBAT 的负端与芯片 PGND 引脚尽量靠在一起,不要过孔。优先级为 COUT> CBAT>CIN。COUT, CBAT, CIN 尽可能靠近芯片放置,否则有可能引起一些异常情况。

4. BAT 引脚


涓流充电情况下 BAT 会提供 100mA 左右电流给电池, 所以 BAT 到电池的引线不宜太细。


5. Layout 示意图



十二、 **封装信**息: eSOP8L

SYMBOL	MIN	NOM	MAX	SYMBOL	MIN	NOM	MAX
Α	1.38	1.50	1.60	Е	5.85	6.00	6.20
A1	0.03	0.10	0.15	E1	3.85	3.90	3.95
A2	1.35	1.40	1.45	е		1.27BSC	
A3	0.55	0.60	0.65	L	0.45	0.60	0.75
b	0.35	0.40	0.45	L1	1.05BSC		
С	0.19	0.22	0.25	θ	0°	4°	8°
D	4.85	4.90	4.95	-	-	-	-

尺寸 (mm) L/F 载体 (mil)	D1	E2	e1
95*130	3.10REF	2.20REF	0.10REF
N/A	N/A	N/A	N/A

版本信息

日期	版本号	变更记录
2023.11.30	Version 1.0	初次发布

重要注意事项:

- 1、富满微电子保留说明书的更改权, 恕不另行通知。
- 2、客户在下单前应获取我司最新版本资料,并验证相关信息是否最新和完整。产品应用前请仔细阅读说明书,包括其中的电路操作注意事项。
- 3、我司产品属于消费类电子产品或其他民用类电子产品。
- 4、在应用我司产品时请不要超过产品的最大额定值,否则会影响整机的可靠性。任何半导体产品特定条件下都有一定的失效或发生故障的可能,买方有责任在使用我司产品进行系统设计、试样和整机制造时遵守安全标准并采取安全措施,以避免潜在失败风险可能造成人身伤害或财产损失情况的发生。
- 5、购买产品时请认清我司商标,如有疑问请与本公司联系。
- 6、产品提升永无止境,我公司将竭诚为客户提供更优秀的产品!
- 7、我司网站 https://www.superchip.cn