

2:1 Multiplexer

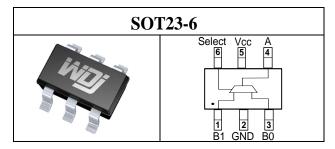
DESCRIPTION

The 3157 is an advanced CMOS analog switch fabricated with silicon gate CMOS technology. It achieves very low propagation delay while maintaining CMOS low power dissipation. Analog and digital voltages that may vary across the full power–supply range (from V_{CC} to GND).

The Select pin has over voltage protection that allows voltages above V_{CC} , up to 7.0 V to be present on the pin without damage or disruption of operation of the part, regardless of the operating voltage.

FEATURES

- Low power dissipation
- High speed
- Standard CMOS logic levels
- High bandwidth, improved linearity
- Switches Standard NTSC/PAL Video, Audio, SPDIF and HDTV
- be used for Clock Switching, Data Mux'ing,etc.
- Low R_{DSON}
- Break Before Make Circuitry, Prevents Inadvertent Shorts
- Operating temperature -55 °C ~ +125 °C
- package : SC70-6, SOT23-6


ORDER INFORMATION


Model	Package	Ordering Number	Packing Option
ONIZAL VOA 004.57	SC70-6	SN74LVC1G3157DCKRW	Tape and Reel, 3000
SN74LVC1G3157	SOT23-6	SN74LVC1G3157DBVRW	Tape and Reel, 3000

WWW.WDJ-IC.COM 1 WDJsemiconductor

PIN CONFIGURATION (Top View)

PIN DESCRIPTIONS

Pin	I/O	Pin Function
A, B ₀ , B ₁	I/O	Data port
Select	I	Controlling choice
V _{CC}	1	Power supply port
GND	1	Ground

FUNCTIONS DESCRIPTION

Select input port	Function		
L	B ₀ Connected to A		
Н	B ₁ Connected to A		

ABSOLUTE MAXIMUM RATINGS

Characteristic	Symbol	Value	Unit
Supply Voltage	V _{CC}	-0.5 ~ +7.0	V
DC Switch Voltage (1)	Vs	-0.5 ~ V _{CC} +0.5	V
DC Input Voltage (1)	V _{IN}	-0.5 ~ +7.0	V
DC Input Diode Current @ V _{IN} < 0 V	I _{IK}	-50	mA
DC Output Current	lout	128	mA
DC V _{CC} or Ground Current	Icc/I _{GND}	100	mA
Storage Temperature Range	Tstg	-65 ~ +150	$^{\circ}$ C
Junction Temperature Under Bias	TJ	150	$^{\circ}$ C
Junction Lead Temperature (Soldering, 10 Seconds)	T _L	260	$^{\circ}$
Power Dissipation @ +85°C	P _D	180	mW

NOTE:

Stresses beyond those listed under "ABSOLUTE MAXIMUM RATINGS" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

1. The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.

CAUTION

This integrated circuit can be damaged by ESD if you don't pay attention to ESD protection. QCSEMI recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

QCSEMI reserves the right to make any change in circuit design, specification or other related things if necessary without notice at any time. Please contact sales office to get the latest datasheet.

WWW.WDJ-IC.COM 3 WDJsemiconductor

RECOMMENDED OPERATING CONDITIONS (2)

Ch	Symbol	Min	Max	Unit	
Supply Voltage Operating	J	V _{CC}	1.65	5.5	V
Select Input Voltage		V _{IN}	0	V _{CC}	V
Switch Input Voltage		V _{IN}	0	V _{CC}	V
Output Voltage		V _{OUT}	0	V _{CC}	V
Operating Temperature		T _A	-55	+125	$^{\circ}$
Input Dice and Fall Time	Control Input V _{CC} = 2.3 V ~ 3.6 V	to tf	0	10	20//
Input Rise and Fall Time	Control Input V _{CC} = 4.5 V ~ 5.5 V	tr,tf	0	5.0	ns/V

Note:

2. Select input must be held HIGH or LOW, it must not float.

ELECTRICAL CHARACTERISTICS

			.,	-	Γ _A = 25℃		T _A = -40°	C ~ +85 ℃	
Symbol	Parameter	Test Conditions	V _{cc}	Min	Тур	Max	Min	Max	Unit
DC ELEC	TRICAL CHARAC	TERISTICS							
			1.65 ~ 1.95				0.75Vcc		
V_{IH}	High Level Input		2.3 ~ 2.8				1.5		V
▼ IH	Voltage		3 ~ 4.2				2.4		
			4.5 ~ 5.5				0.6Vcc		
	I am I am I lament		1.65 ~ 1.95					0.25V _{CC}	
V_{IL}	Low Level Input Voltage		2.3 ~ 2.8					0.4	V
			3 ~ 5.5					0.3Vcc	
I _{IN}	Input Leakage Current	0 < V _{IN} < 5.5 V	0 ~ 5.5		±0.05	±0.1		±1	μΑ
I _{OFF}	OFF State Leakage Current	0 < A, B < Vcc	1.65 ~ 5.5		±0.05	±0.1		±1	μA
I _{CC}	Quiescent Supply	V _{IN} = Vcc or GND I _{OUT} = 0	5.5			1.0		10	μA
	Analog Signal Range		V _{CC}	0		V _{CC}	0	V _{CC}	V
		V _{IN} = 0 V, I _O = 30 mA			3.0			7.0	Ω
		$V_{IN} = 2.4 \text{ V},$ $I_{O} = -30 \text{ mA}$	4.5		5.0			12	Ω
		$V_{IN} = 4.5 \text{ V},$ $I_{O} = -30 \text{ mA}$			7.0			15	Ω
	Considering Con-	$V_{IN} = 0 V,$ $I_{O} = 24 \text{ mA}$	3.0		4.0			9.0	Ω
R_{ON}	Switch On Resistance ⁽³⁾	$V_{IN} = 3 V$, $I_{O} = -24 \text{ mA}$	3.0		10			20	Ω
		$V_{IN} = 0 V$, $I_O = 8 \text{ mA}$	2.3		5.0			12	Ω
		$V_{IN} = 2.3 \text{ V},$ $I_{O} = -8 \text{ mA}$	2.0		13			30	Ω
		V_{IN} =0V, I_{O} =4 mA			6.5			20	Ω
		V _{IN} = 1.65 V, I _O = -4 mA	1.65		17			50	Ω
-	On Resistance	$I_{A} = -30 \text{ mA}$ $0 \le V_{Bn} \le V_{CC}$	4.5					25	Ω
R _{RANGE}	Over Signal Range ⁽³⁾⁽⁷⁾	$I_A = -24 \text{ mA}$ $0 \le V_{Bn} \le V_{CC}$	3					50	Ω

ELECTRICAL CHARACTERISTICS (continued)

Ol. a.l.	Do no no oto n	Took Conditions	· ·		T _A = 25°	C	T _A = -40°	℃ ~ +85℃	11
Symbol	Parameter	Test Conditions	V _{cc}	Min	Тур	Max	Min	Max	Unit
D	On Resistance Over Signal	$I_A = -8 \text{ mA}$ $0 \le V_{Bn} \le V_{CC}$	2.3					100	Ω
R _{RANGE}	Range ⁽³⁾⁽⁷⁾	$I_A = -4 \text{ mA}$ $0 \le V_{Bn} \le V_{CC}$	1.65					300	Ω
		I _A = -30 mA V _{Bn} = 3.15	4.5		0.15				Ω
۸D	On Resistance	I _A = -24 mA V _{Bn} = 2.1	3		0.2				Ω
ΔR_{ON}	Match Between Channels (3)(4)(5)	I _A = -8 mA V _{Bn} = 1.6	2.3		0.5				Ω
		I _A = -4 mA V _{Bn} = 1.15	1.65		0.5				Ω
		$I_A = -30 \text{ mA}$ $0 \le V_{Bn} \le V_{CC}$	5		6.0				Ω
В	On Resistance	$I_A = -24 \text{ mA}$ $0 \le V_{Bn} \le V_{CC}$	3.3		12				Ω
R _{FLAT}	Flatness ⁽³⁾⁽⁴⁾⁽⁶⁾	$I_A = -8 \text{ mA}$ $0 \le V_{Bn} \le V_{CC}$	2.5		28				Ω
		$I_A = -4 \text{ mA}$ $0 \le V_{Bn} \le V_{CC}$	1.8		125				Ω
C ELEC	TRICAL CHARAC	TERISTICS							
			1.65 ~ 1.95						nS
t_{PHL}	Propagation	Figure 1	2.3 ~ 2.7					1.2	nS
t _{PLH}	Delay Bus to Bus (8)	V _I = OPEN	3.0 ~ 3.5					0.8	nS
			4.5 ~ 5.5					0.3	nS
	Output Enable	Figure 1	1.65 ~ 1.95			23	7.0	24	nS
t_{PZL}	Time,	$V_I = 2*V_{CC}$ for	2.3 ~ 2.7			13	3.5	14	nS
t_{PZH}	Turn On Time (A to Bn)	$t_{PZL}, V_I = 0 \text{ V for}$	3.0 ~ 3.5			6.9	2.5	7.6	nS
	(A to Bil)	t _{PZH}	4.5 ~ 5.5			5.2	1.7	5.7	nS
	Output Disable	Figure 4	1.65 ~ 1.95			12.5	3.0	13	nS
$t_{\sf PLZ}$	Output Disable Time, Turn Off	Figure 1 $V_I = 2*V_{CC}$ for	2.3 ~ 2.7			7.0	2.0	7.5	nS
t_{PHZ}	Time (A Port	t_{PLZ} , $V_I = 0$ V for	3.0 ~ 3.5			5.0	1.5	5.3	nS
	to B Port)	t _{PHZ}	1			1	I .		

ELECTRICAL CHARACTERISTICS (continued)

				1	Γ _A = 25℃		T _A = -40°	C ~ +85℃	
Symbol	Parameter	Test Conditions	V _{cc}	Min	Тур	Max	Min	Max	Unit
			1.65 ~ 1.95				0.5		nS
	Break Before	Figure2 ,	2.3 ~ 2.7				0.5		nS
t _{B-M}	Make Time (7)	$C_L = 50 \text{ pF}$,	3.0 ~ 3.5				0.5		nS
		$R_L = 600 \Omega$	4.5 ~ 5.5				0.5		nS
_	Charge Injection	Figure 3, $C_L = 0.1 \text{ nF}$,	5.0		7.0				рС
Q	(7)	$V_{GEN} = 0 V$, $R_{GEN} = 0 \Omega$	3.3		3.0				рС
OIRR	Off Isolation (9)	Figure 4, $R_L = 50 \Omega$, f = 10MHz	1.65 ~ 5.5		-57				dB
Xtalk	Crosstalk	Figure 5, R_L = 50 Ω , f = 10MHz	1.65 ~ 5.5		-54				dB
BW	−3 dB Bandwidth	Figure 8, $R_L = 50 \Omega$	1.65 ~ 5.5		350M				Hz
THD	Total Harmonic Distortion (7)	$R_L = 600 \Omega,$ $0.5V_{P-P}$ $f = 600 Hz \sim 20$ kHz	5.0		0.011				%
C _{IN}	Select Pin Input Capacitance (10)		0		2.3				pF
C _{IO-B}	B Port Off Capacitance (10)	Figure 6	5.0		5.0				pF
C _{IOA-ON}	A Port Capacitance when Switch is Enabled (10)	Figure 7	5.0		15.5				pF

Note:

- 3. Measured by the voltage drop between A and B pins at the indicated current through the switch. On Resistance is determined by the lower of the voltages on the two (A or B Ports).
- 4. Parameter is characterized but not tested in production.
- 5. ΔR_{ON} = R_{ON} max R_{ON} min measured at identical V_{CC} , temperature and voltage levels.
- 6. Flatness is defined as the difference between the maximum and minimum value of On Resistance over the specified range of conditions.
- 7. Guaranteed by Design.
- 8. This parameter is guaranteed by design but not tested. The bus switch contributes no propagation delay other than the RC delay of the On Resistance of the switch and the 50 pF load capacitance, when driven by an ideal voltage source (zero output impedance).
- 9. Off Isolation = 20 log10 $[V_A/V_{Bn}]$.
- 10. T_A = +25°C, f = 1 MHz, Capacitance is characterized but not tested in production.

TEST CIRCUITS

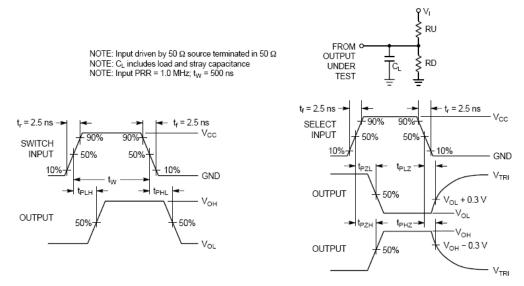


Figure 1. AC Test Circuit ,AC Waveforms

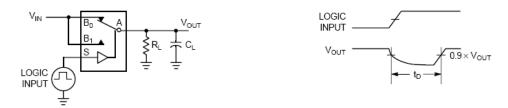


Figure 2. Break Before Make Interval Timing

WWW.WDJ-IC.COM 8 WDJsemiconductor

TEST CIRCUITS (continued)

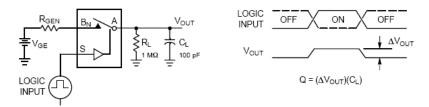


Figure 3. Charge Injection Test

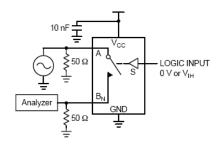


Figure 4. Off Isolation

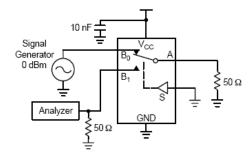


Figure 5.Crosstalk

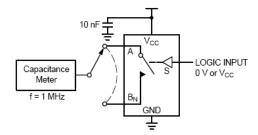


Figure 6. Channel Off Capacitance

WWW.WDJ-IC.COM 9 WDJsemiconductor

TEST CIRCUITS (continued)

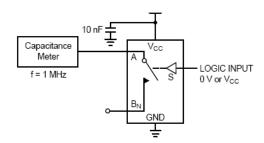
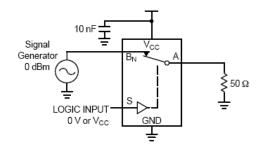
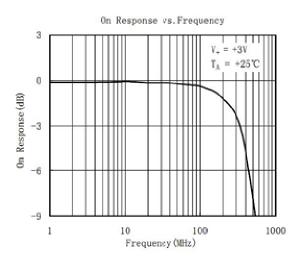
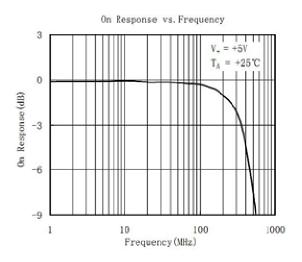
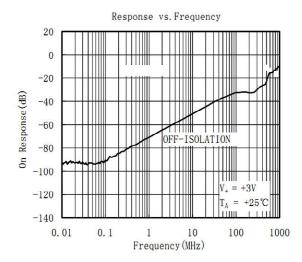
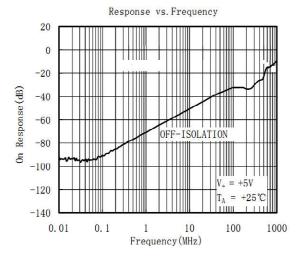


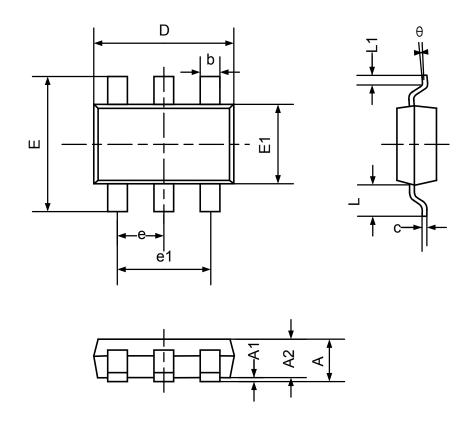
Figure 7. Channel On Capacitance


Figure 8. Bandwidth

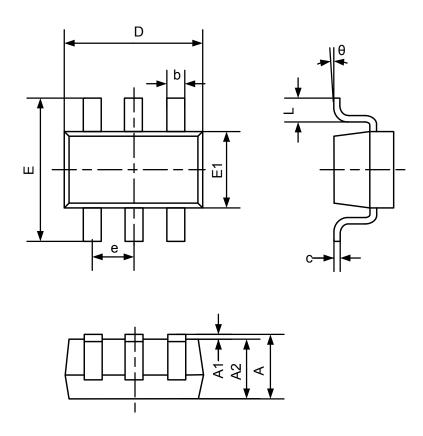


TYPICAL PERFORMANCE CHARACTERISTICS



PACKAGE OUTLINE

SC70-6



Compleal	Dimensions in Millimeters					
Symbol	Min	Max				
А	0.85	1.05				
A1	0.00	0.10				
A2	0.80	1.00				
b	0.15	0.35				
С	0.08	0.22				
D	2.02	2.12				
E	2.20	2.40				
E1	1.25	1.35				
е	0.	65BSC				
e1	1.30BSC					
L	0.50REF					
L1	0.28	0.38				
θ	0°	8°				

PACKAGE OUTLINE

SOT23-6

Comple at	Dimensions in Millimeters						
Symbol	Min	Nom	Max				
A			1.240				
A1	0.010	0.050	0.090				
A2	1.050	1.100	1.150				
b	0.300	0.350	0.400				
С	0.117		0.157				
D	2.870	2.920	2.970				
E	2.720	2.800	2.880				
E1	1.550	1.600	1.650				
е		0.950BSC					
e1		1.900BSC					
L	0.320	0.400	0.480				
θ	0°		5°				

Important statement:

- ➤ WDJ Semiconductor Co,Ltd. reserves the right to change the products and services provided without notice. Customers should obtain the latest relevant information before ordering, and verify the timeliness and accuracy of this information.
- Any and all WDJ Semiconductor products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, orother applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consultwithyour WDJ Semiconductor representative nearest you before using any WDJ Semiconductor products describedor contained herein in such applications.
- >WDJ Semiconductor Co,Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to otherproperty. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- ➤In the event that any or all WDJ Semiconductor products (including technical data, services) described or contained hereinare controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining theexport license from the authorities concerned in accordance with the above law.
- >WDJ Semiconductor assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all WDJ Semiconductor products described or contained herein.
- > Specifications of any and all WDJ Semiconductor products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in thecustomer's products or equipment.

WWW.WDJ-IC.COM 14 WDJsemiconductor