

LM66200

ZHCSMV5 - NOVEMBER 2021

LM66200 1.6V 至 5V、2.5A 双理想二极管,具有自动切换功能

1 特性

输入电压范围: 1.6V 至 5.5V

最大持续电流:2.5A

导通电阻: $40m\Omega$ (典型值) • 待机电流:50nA(典型值) 静态电流:1.32μA(典型值)

• 自动二极管切换

受控输出压摆率:

- 电压为 3.3V 时为 1.3ms (典型值)

• VOUT 大于 VINx 时实现反向电流阻断

• 热关断

2 应用

电表

电机驱动器

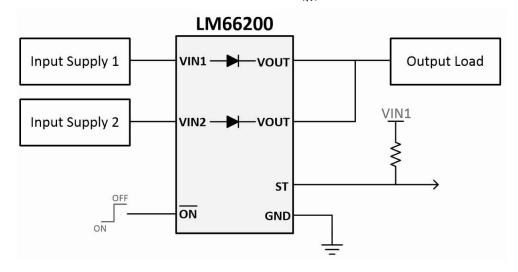
• 楼宇自动化

• 电子销售终端

• 资产跟踪器

3 说明

LM66200 是一款双输入理想二极管器件,具有 1.6V 至 5.5V 的额定电压和每通道 2.5A 的最大额定电流。 该器件使用 N 沟道 MOSFET 在电源之间切换,同时在 第一次施加电压时提供受控的压摆率。


凭借 1.32 μA(典型值)的低静态电流和 50nA(典型 值)的低待机电流,LM66200适用于其中一个输入由 电池供电的系统。这些低电流延长了电池的使用寿命和 续航时间。

LM66200 采用自动二极管模式,可为电压最高的电源 分配优先级,并将其输送至输出端。低电平有效使能引 脚 (ON) 可禁用两个通道,允许用户在无需任一电源的 情况下将器件设为关断模式。

器件信息(1)

器件型号	封装	封装尺寸 (标称值)
LM66200	SOT (8)	2.1mm × 1.6mm

如需了解所有可用封装,请参阅数据表末尾的可订购产品附 录。

典型应用

Table of Contents

1 特性	1	7.5 Output Voltage Drop	10
2 应用		7.6 Device Functional Modes	
3 说明		8 Application and Implementation	11
4 Revision History		8.1 Application Information	1
5 Pin Configuration and Functions		8.2 Typical Application	
6 Specifications		9 Power Supply Recommendations	13
6.1 Absolute Maximum Ratings		10 Layout	13
6.2 ESD Ratings		10.1 Layout Guidelines	13
6.3 Recommended Operating Conditions		10.2 Layout Example	13
6.4 Thermal Information		11 Device and Documentation Support	14
6.5 Electrical Characteristics		11.1 Documentation Support	14
6.6 Switching Characteristics		11.2 接收文档更新通知	14
6.7 Typical Characteristics		11.3 Trademarks	14
7 Detailed Description		11.4 Electrostatic Discharge Caution	14
7.1 Overview		11.5 术语表	14
7.2 Functional Block Diagram		12 Mechanical, Packaging, and Orderable	
7.3 Feature Description		Information	14
7.4 VINx Collapse Rate			

4 Revision History

DATE	REVISION	NOTES
November 2021	*	Initial release.

5 Pin Configuration and Functions

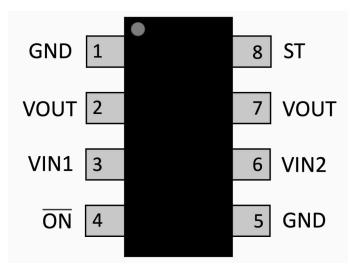


图 5-1. DRL Package 8-Pin SOT Top View

表 5-1. Pin Functions

PIN		I/O	DESCRIPTION
NAME	NO.	1/0	DESCRIPTION
GND	1, 5	_	Device ground
VOUT	2, 7	0	Output power
VIN1	3	I	Channel 1 input power
ON	4	I	Active low enable pin. Device is enabled when \overline{ON} is pulled low and the device turns off both channels when \overline{ON} is pulled high.
VIN2	6	I	Channel 2 input power
ST	8	0	Status pin. Pulled high when VIN1 is being used and pulled low when VIN2 is being used. Can be pulled up to VIN1 to reduce quiescent current when VIN2 is powering the output.

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)

		MIN	MAX	UNIT
V _{IN1} , V _{IN2}	Input Voltage	- 0.3	6	V
V _{OUT}	Output Voltage	- 0.3	6	V
V _{ST} , V _{ON}	Control Pin Voltage	- 0.3	6	V
I _{MAX}	Maximum Current		2.5	Α
I _{MAX,PLS}	Maximum Pulsed Current Max duration 1ms, Duty cycle of 2%		4	А
TJ	Junction temperature		Internally Limited	°C
T _{stg}	Storage temperature	- 65	150	°C

⁽¹⁾ Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.

6.2 ESD Ratings

				UNIT
V	Electrostatic discharge	Human body model (HBM), per ANSI/ESDA/ JEDEC JS-001, all pins ⁽¹⁾	±2000	\ \ \
V _(ESD)	Lieurostatic disoriarge	Charged device model (CDM), ANSI/ESDA/ JEDEC JS-002, all pins ⁽²⁾	±500	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

-	, , , , , , , , , , , , , , , , , , , ,	MIN	NOM MAX	UNIT
V _{IN1} , V _{IN2}	Input Voltage	1.6	5.5	V
V _{OUT}	Output Voltage	0	5.5	V
V _{ST} , V _{ON}	Control Pin Voltage	0	5.5	V
T _A	Ambient Temperature	- 40	125	°C

6.4 Thermal Information

		LM66200	
	THERMAL METRIC ⁽¹⁾	DRL (SOT)	UNIT
		8-PINS	
R ₀ JA	Junction-to-ambient thermal resistance	111.5	°C/W
R _θ JC(top)	Junction-to-case (top) thermal resistance	19.4	°C/W
R ₀ JB	Junction-to-board thermal resistance	35.8	°C/W
Ψ_{JT}	Junction-to-top characterization parameter	1.2	°C/W
ΨЈВ	Junction-to-board characterization parameter	19.1	°C/W
R _{θ JC(bot)}	Junction-to-case (bottom) thermal resistance	N/A	°C/W

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

Product Folder Links: LM66200

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.5 Electrical Characteristics

over operating free-air temperature range (unless otherwise noted)

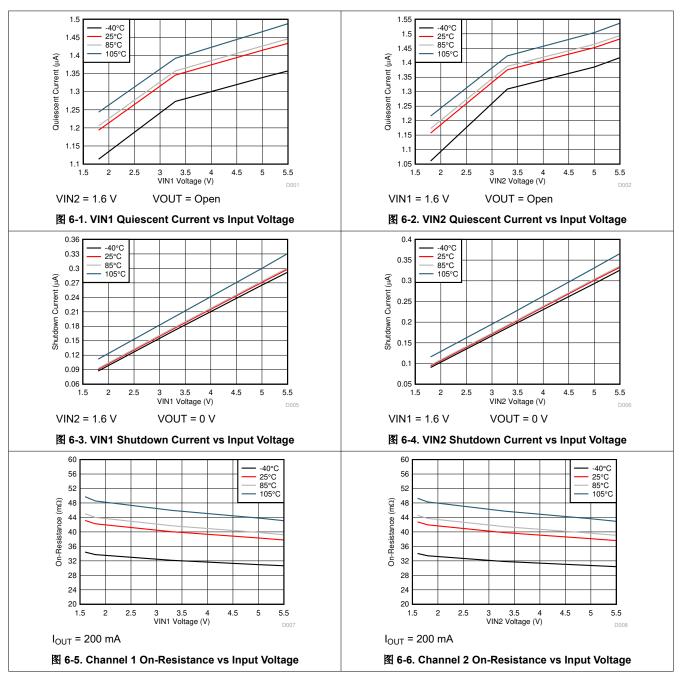
ovol op	PARAMETER	range (unless otherwise noted) TEST CONDITIONS	T _A	MIN	TYP	MAX	UNIT
Power (Consumption	TEST SONDITIONS	I A		• • • •	WAX	01111
			25°C		0.22		uA
I _{STBY,}	VIN1 Standby Current	VIN2 powers VOUT	- 40°C to 85°C			0.31	uA
VIN1	VIIVI Glandby Guirent	VIN2 > VIN1 + 0.2 V	- 40°C to 105°C			0.32	uA
			25°C		0.05	0.02	uA
I _{STBY,}	VIN2 Standby Current	VIN1 powers VOUT	- 40°C to 85°C			0.07	uA
VIN2	VIIVE Stariday Garrent	VIN1 > VIN2 + 0.1 V	- 40°C to 105°C			0.09	uA
			25°C		1.32	0.00	uA
I _{Q, VIN1}	VIN1 Quiescent Current	VIN1 powers VOUT	- 40°C to 85°C		1.02	3.6	uA
	VIIVI Quidocont Guiront	VIN1 > VIN2 + 0.1 V	- 40°C to 105°C			4.4	uA
			25°C		1.35	7.7	uA
مانسان ما	VIN2 Quiescent Current	VIN2 powers VOUT	- 40°C to 85°C		1.00	3.7	uA
I _{Q, VIN2}	VIIVE Quiescent Current	VIN2 > VIN1 + 0.2 V	- 40°C to 105°C			4.5	uA
			25°C		0.1	4.5	uA uA
		ON = 5 V VIN1 > VIN2	- 40°C to 85°C		0.1	1.3	uA uA
I _{SD,VIN1}		VOUT = 0 V	- 40°C to 105°C			2.9	uA
	VIN1 Shutdown Current		25°C		0.05	2.5	uA uA
		ON = 5 V VIN1 < VIN2	- 40°C to 85°C		0.00	1	uA
		VOUT = 0 V	- 40°C to 105°C			2.4	uA uA
	VIN2 Shutdown Current		25°C		0.05	2.4	uA
		ON = 5 V VIN2 > VIN1	- 40°C to 85°C		0.00	1.3	uA uA
		VOUT = 0 V	- 40°C to 105°C			2.9	uA uA
I _{SD,VIN2}			25°C		0.05	2.9	uA uA
		ON = 5 V VIN2 < VIN1	- 40°C to 85°C		0.03	0.7	uA
		VOUT = 0 V				2.1	uA uA
	ON win In alread	VIN1 = VIN2 = PR1 = 5.5 V	- 40°C to 105°C				
I _{ON}	ON pin leakage		- 40°C to 105°C			0.1	uA
I _{ST}	ST pin leakage	VIN1 = VIN2 = ST = 5.5 V	- 40°C to 105°C			0.03	uA
Perform	nance		25°C		27	46	0
		VINx = 5 V	25°C		37	46	mΩ
		I _{OUT} = 200 mA	- 40°C to 85°C			55	mΩ
			- 40°C to 105°C			60	m Ω
		VINx = 3.3 V	25°C		40	48	mΩ
		I _{OUT} = 200 mA	- 40°C to 85°C			55	mΩ
R _{ON}	On-Resistance		- 40°C to 105°C			59	mΩ
٠.,		VINx = 1.8 V	25°C		41	51	mΩ
		I _{OUT} = 200 mA	- 40°C to 85°C			61	mΩ
			- 40°C to 105°C			66	mΩ
		VINV = 4.6.V	25°C		42	52	$\mathbf{m}\Omega$
		VINx = 1.6 V I _{OUT} = 200 mA	- 40°C to 85°C			68	$\mathbf{m} \Omega$
			- 40°C to 105°C			74	m Ω
V _{OL,ST}	Status pin V _{OL}	I _{ST} = 1 mA	- 40°C to 105°C			0.1	V
t _{ST}	Status pin response time		- 40°C to 105°C		5		us

6.5 Electrical Characteristics (continued)

over operating free-air temperature range (unless otherwise noted)

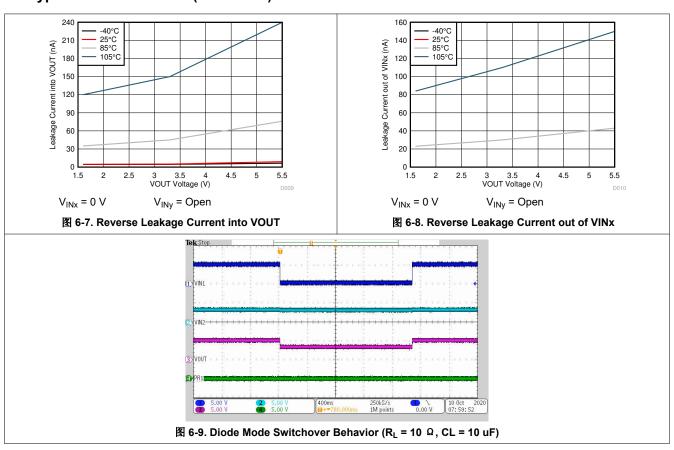
	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	UNIT
V _{ON}	ON reference voltage	1.6 V ≤ VINx ≤ 5.5 V	- 40°C to 105°C	8.0	1	1.2	٧
Protecti	Protection						
t _{RCB}	Reverse current blocking response time	VOUT > VINx + 1 V	- 40°C to 105°C		2		us
V _{RCB,R}	Reverse current blocking rising threshold	1.6 V ≤ VINx ≤ 5.5 V	- 40°C to 105°C		42	70	mV
V _{RCB,F}	Reverse current blocking falling threshold	1.6 V ≤ VINx ≤ 5.5 V	- 40°C to 105°C		17	40	mV
I _{RCB}	Reverse current blocking activation current	1.6 V ≤ VINx ≤ 5.5 V	- 40°C to 105°C		1.4	4	Α
TSD	Thermal shutdown		-		170		°C
TSD _{HYS}	Thermal shutdown hysteresis		-		20		°C

6.6 Switching Characteristics


over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN TYP N	MAX UNIT
Switch	over		<u>'</u>	<u> </u>
t _{SW}	Switchover time, VINx = 5 V	$R_L = 10 \Omega$, $C_L = 10 uF$	8	us
t _{SW}	Switchover time, VINx = 3.3 V	R _L = 10 Ω , C _L = 10uF	6.2	us
t _{SW}	Switchover time, VINx = 1.8 V	$R_L = 10 \Omega$, $C_L = 10 uF$	17.7	us
t _D	Delay time, VINx = 5 V	R _L = 100 Ω , C _L = 10uF	1	ms
t _D	Delay time, VINx = 3.3 V	$R_L = 100 \Omega$, $C_L = 10 uF$	1.2	ms
t _D	Delay time, VINx = 1.8 V	$R_L = 100 \Omega$, $C_L = 10 uF$	1.4	ms
t _{SS}	Soft-start time, VINx = 5 V	$R_L = 100 \Omega$, $C_L = 10 uF$	1.7	ms
t _{SS}	Soft-start time, VINx = 3.3 V	R _L = 100 Ω , C _L = 10uF	1.3	ms
t _{SS}	Soft-start time, VINx = 1.8 V	$R_L = 100 \Omega$, $C_L = 10 uF$	0.9	ms

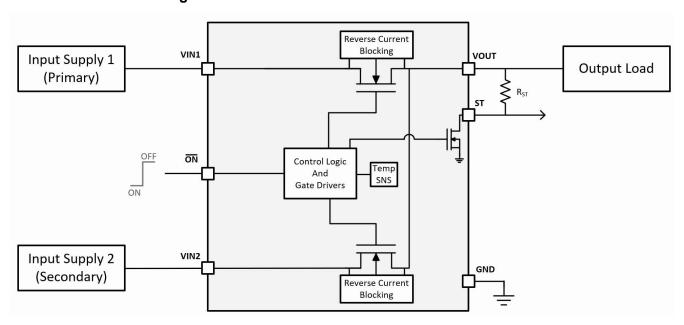
Product Folder Links: LM66200



6.7 Typical Characteristics

6.7 Typical Characteristics (continued)

7 Detailed Description


7.1 Overview

The LM66200 is a dual ideal diode device with a voltage rating of 1.6 V to 5.5 V and a maximum current rating of 2.5 A per channel. The device uses N-channel MOSFETs to switch between supplies, while providing a controlled slew rate when voltage is first applied.

When in operation, the device has a quiescent of 1.32 μ A (typical), which is drawn from the highest VINx supply. The lower voltage VINx supply only sees a standby current of 50 nA (typical).

The LM66200 uses automatic diode mode to prioritize the highest voltage supply and pass it through to the output. The active low enable pin (\overline{ON}) allows the user to disable both channels, putting the device into shutdown mode when neither supply is needed.

7.2 Functional Block Diagram

7.3 Feature Description

The below sections detail the features of the LM66200.

7.3.1 Truth Table

The below table shows the expected behavior of the LM66200.

VIN1	VIN2	ŌN	ST	VOUT
VIN1 > VIN2		Low High		VIN1
VIN1	< VIN2	Low	Low	VIN2
X	X	High	Low	Hi-Z

X = do not care

7.3.2 Soft Start

When an input voltage is applied to the LM66200 and the output voltage is lower than 1 V, the output is brought up with soft start to minimize the inrush current due to output capacitance. During switchover, soft start is not used to minimize output voltage drop. For linear soft start behavior, iTI recommends to have an output capacitance of at least 0.1 uF.

7.3.3 Status Indication

The ST pin is an open drain output that must be pulled up to an external voltage for proper operation. When the LM66200 is powering the output using VIN1, the ST pin is pulled high. When the LM66200 is powering the output using VIN2, the ST pin is pulled low. During a fault condition the ST pin is pulled low, regardless of the channel being used.

7.4 VINx Collapse Rate

The LM66200 uses the highest voltage supply to power the device. When one supply drops below the other, the device changes the supply used to power the device. If the supply powering the device drops at a rate faster than 1 V/10 $\,\mu$ s, the other supply must be at 2.5 V or higher to prevent the device from resetting. If the other supply is lower than 2.5 V, then the device is not be able to switch to the supply quickly enough, and the device resets and turns on with soft start timing. To slow down the decay of the input, capacitance can be added to the input or output.

7.5 Output Voltage Drop

The output voltage drop is based on the load capacitance and load resistance. The stronger the resistive load, the faster the output discharges during switchover. The higher the capacitance on the output, the less the voltage drops during switchover.

7.6 Device Functional Modes

The below sections detail the operation of the LM66200 device.

7.6.1 Automatic Switchover

When both inputs are applied to the device, the highest voltage is used to power the output. IThe $\overline{\text{ON}}$ pin is used as an active low device enable, turning off the device when it is pulled high. When the device is turned back on, soft start is used to power the output. The expected behavior for the device is shown in the waveform below.

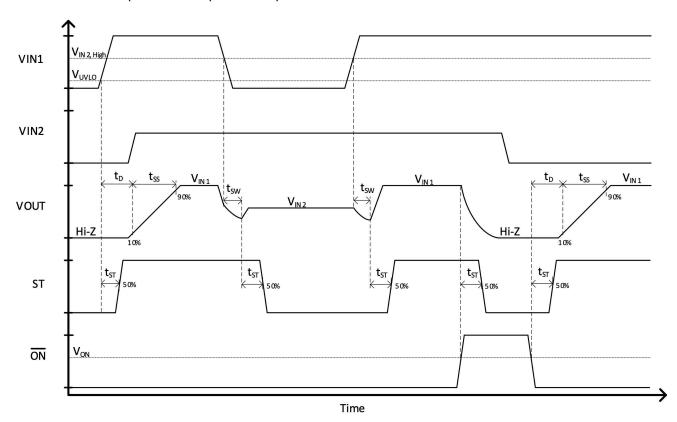


图 7-1. Automatic Switchover Waveform

8 Application and Implementation

Note

以下应用部分中的信息不属于 TI 器件规格的范围,TI 不担保其准确性和完整性。TI 的客 户应负责确定器件是否适用于其应用。客户应验证并测试其设计,以确保系统功能。

8.1 Application Information

This section highlights some of the design considerations when implementing this device in various applications.

8.2 Typical Application

This typical application demonstrates how the LM66200 device can be used to control inrush current for high output capacitances.

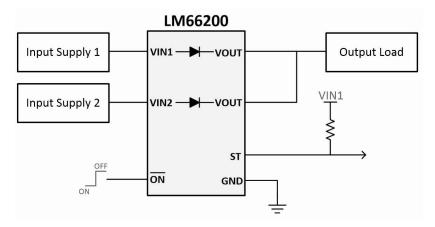


图 8-1. LM66200 Typical Application Diagram

8.2.1 Design Requirements

For this example, the values below are used as the design parameters.

表 8-1. Design Parameters

PARAMETER	VALUE
VIN1 input voltage	5 V
Output capacitance	100 µ F
Maximum inrush current	500 mA

8.2.2 Detailed Design Procedure

Use 方程式 1 to determine how much inrush current is caused by the output capacitor.

$$I_{INRUSH} = C_{OUT} \times V_{OUT} / t_{SS}$$
 (1)

where

- I_{INRUSH} = amount of inrush current caused by C_{OUT}
- C_{OUT} = capacitance on VOUT
- t_{SS} = output voltage soft start time
- V_{OUT} = final value of the output voltage

With a final output voltage of 5 V, the expected rise time is 1.7 ms. Using the inrush current equation, the inrush current caused by a 100-µF capacitance is 294 mA, well below the 500-mA target.

8.2.3 Application Performance Plots

The below oscilloscope capture shows 5 V being applied to VIN1. The output comes up with slew rate control and limits the inrush current to below 500 mA.

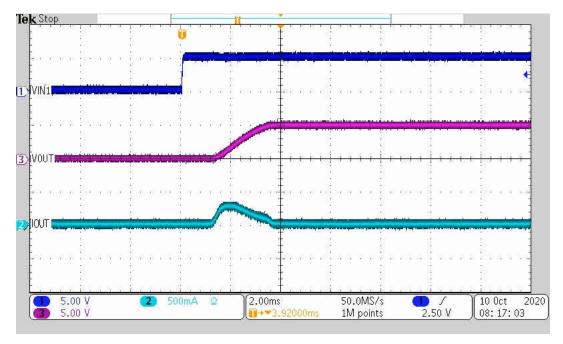


图 8-2. LM66200 Inrush Current Control

Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

9 Power Supply Recommendations

The device is designed to operate with a VIN range of 1.6 V to 5.5 V. The VIN power supplies must be well regulated and placed as close to the device terminals as possible. The power supplies must be able to withstand all transient load current steps. In most situations, using an input capacitance (CIN) of 1 μ F is sufficient to prevent the supply voltage from dipping when the switch is turned on. In cases where the power supply is slow to respond to a large transient current or large load current step, additional bulk capacitance can be required on the input.

10 Layout

10.1 Layout Guidelines

For best performance, all traces must be as short as possible. To be most effective, the input and output capacitors must be placed close to the device to minimize the effects that parasitic trace inductances can have on normal operation. Using wide traces for VIN1, VIN2, VOUT, and GND helps minimize the parasitic electrical effects.

10.2 Layout Example

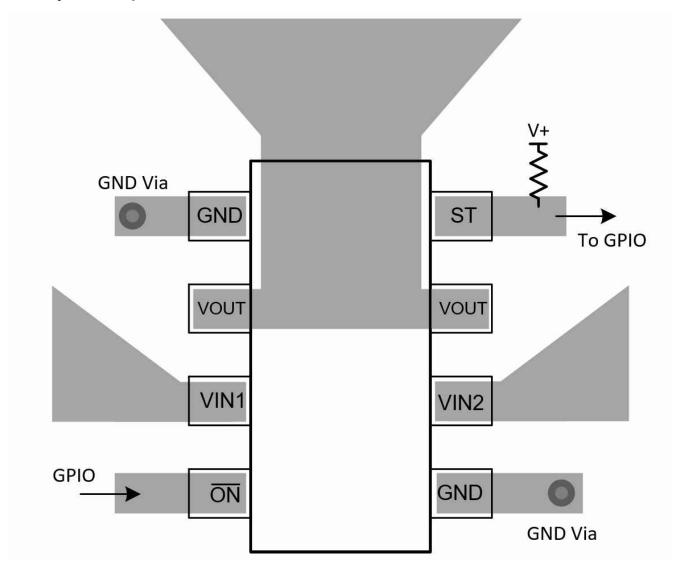


图 10-1. LM66200 Layout Example

11 Device and Documentation Support

11.1 Documentation Support

11.1.1 Related Documentation

For related documentation see the following:

- · Texas Instruments, Basics of Power MUX application note
- · Texas Instruments, 11 Ways to Protect Your Power Path e-book

11.2 接收文档更新通知

要接收文档更新通知,请导航至 ti.com 上的器件产品文件夹。点击*订阅更新* 进行注册,即可每周接收产品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。

11.3 Trademarks

所有商标均为其各自所有者的财产。

11.4 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

11.5 术语表

TI术语表本术语表列出并解释了术语、首字母缩略词和定义。

12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Submit Document Feedback

www.ti.com 8-Jan-2022

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
							(6)				
LM66200DRLR	ACTIVE	SOT-5X3	DRL	8	4000	RoHS & Green	Call TI SN	Level-1-260C-UNLIM	-40 to 125	LM66	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

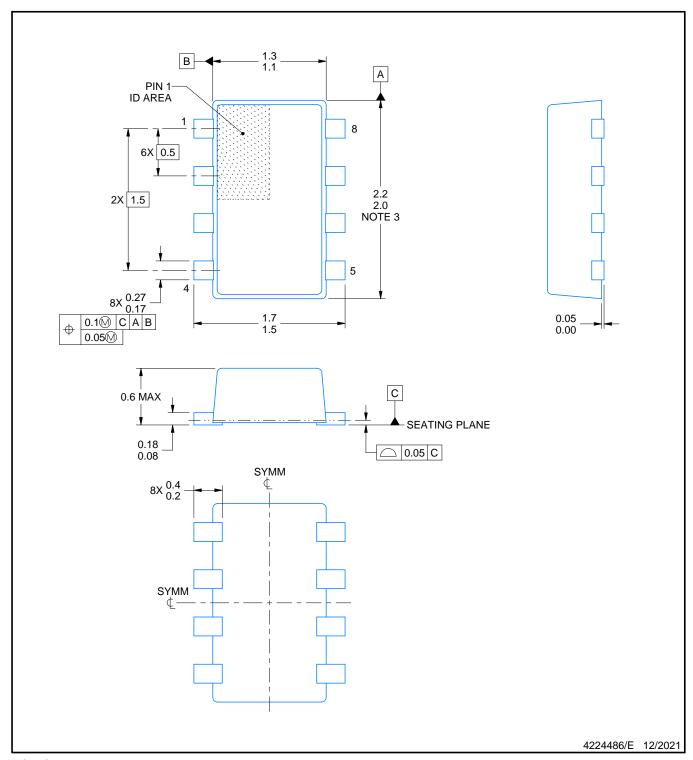
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

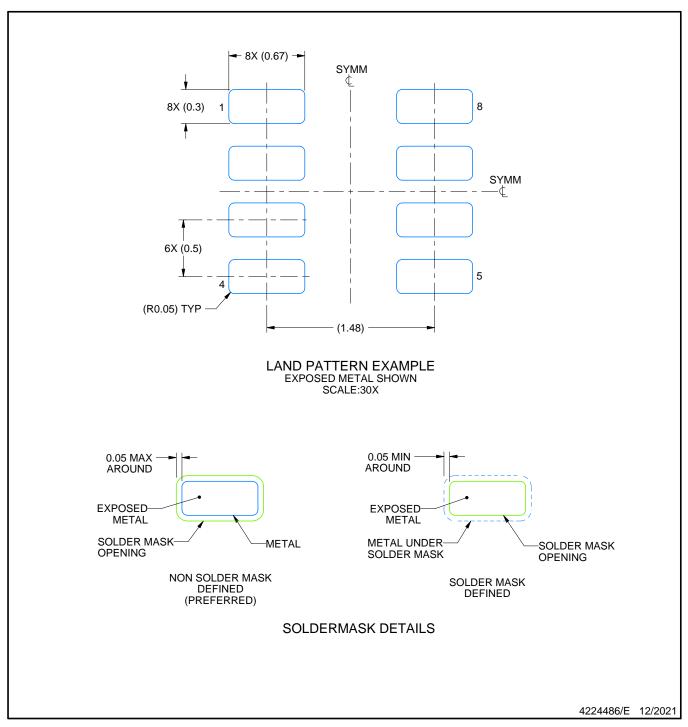
Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.


- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

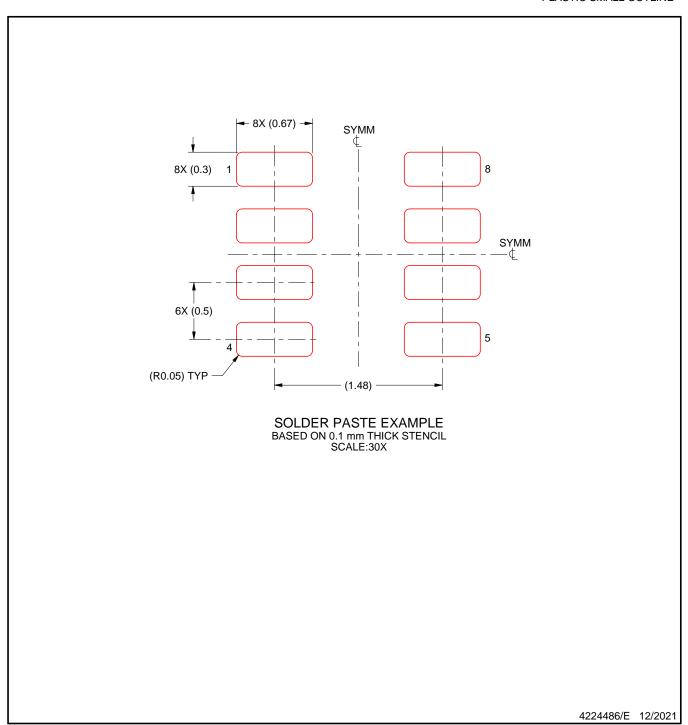
PLASTIC SMALL OUTLINE



NOTES:

- All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 This drawing is subject to change without notice.
 This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, interlead flash, protrusions, or gate burrs shall not accord 0.45 mercans side.
- exceed 0.15 mm per side.
- 4. Reference JEDEC Registration MO-293, Variation UDAD

PLASTIC SMALL OUTLINE



NOTES: (continued)

- 5. Publication IPC-7351 may have alternate designs.
- 6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.7. Land pattern design aligns to IPC-610, Bottom Termination Component (BTC) solder joint inspection criteria.

PLASTIC SMALL OUTLINE

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

重要声明和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022,德州仪器 (TI) 公司