

PRODUCT DATA SHEET

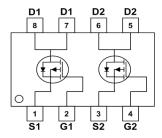
To learn more about JGSEMI, please visit our website at

Datasheet

Sampl

Please note: Please check the JINGAO Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.jg-semi.cn. Please email any questions regarding the system integration to JINGAO_questions@jgsemi.com.

Dual P-Ch 60V Fast Switching MOSFETs


Product Summary

BVDSS	RDSON	ID
-60V	70mΩ	-8.0A

- Green Device Available
- Super Low Gate Charge
- Excellent CdV/dt effect decline
- Advanced high cell density Trench technology

SOP8

Absolute Maximum Ratings

Symbol	Parameter	Rating	Units	
Vos	Drain-Source Voltage	-60	V	
Vgs	Gate-Source Voltage	±20	V	
I _D @T _A =250	Continuous Drain Current, V _{GS} @ -10V ¹	-8.0	А	
I _D @ T _A =700	Continuous Drain Current, V _{GS} @ -10V ¹	-6.2	А	
Ірм	Pulsed Drain Current ²	Pulsed Drain Current ² -16.2		
EAS	Single Pulse Avalanche Energy ³	69.7	mJ	
las	Avalanche Current	Avalanche Current 44.4		
P _D @T _A =250	Total Power Dissipation⁴	6.1	W	
T _{STG}	Storage Temperature Range -55 to 150		С	
TJ	T _J Operating Junction Temperature Range		С	

Thermal Data

Symbol	Parameter	Тур.	Max.	Unit
ReJA	Thermal Resistance Junction-Ambient ¹		85	C/ W
Reuc	Thermal Resistance Junction-Case ¹		36	C/ W

Electrical Characteristics (T_J=25 °C , unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V , I _D =-250uA	-60			V	
△BV _{DSS} /△T _J	BV _{DSS} Temperature Coefficient	Reference to 250 , I _D =-1mA		-0.03		V/ C	
Б	2	V _{GS} =-10V , I _D =-3A		70	90	mO.	
RDS(ON)	Static Drain-Source On-Resistance ²	V _{GS} =-4.5V , I _D =-2A		90	1 15	mΩ	
V _{GS(th)}	Gate Threshold Voltage	V V I 0504	-1.2		-2.5	V	
$\triangle V_{GS(th)}$	V _{GS(th)} Temperature Coefficient	$V_{GS}=V_{DS}$, $I_D=-250uA$		4.56		mV/ C	
	Drain Course Leakers Course	V _{DS} =-48V , V _{GS} =0V , T _J =250			1		
loss	Drain-Source Leakage Current	V _{DS} =-48V , V _{GS} =0V , T _J =550			5	uA	
Igss	Gate-Source Leakage Current	$V_{GS}=\pm 20V$, $V_{DS}=0V$			±100	nA	
gfs	Forward Transconductance	V _{DS} =-5V , I _D =-3A		8.7		S	
Rg	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz		15		Ω	
Qg	Total Gate Charge (-4.5V)			11.8			
Qgs	Gate-Source Charge	V _{DS} =-48V , V _{GS} =-4.5V , I _D =-3A		1.9		nC	
Q _{gd}	Gate-Drain Charge			6.5			
T _{d(on)}	Turn-On Delay Time			8.8			
Tr	Rise Time	V_{DD} =-15V , V_{GS} =-10V , R_{G} =3.3 Ω ,		19.6			
T _{d(off)}	Turn-Off Delay Time	I _D =-1A		47.2		ns	
T _f	Fall Time			9.6			
C _{iss}	Input Capacitance			1080			
Coss	Output Capacitance	V _{DS} =-15V , V _{GS} =0V , f=1MHz		73		pF	
C _{rss}	Reverse Transfer Capacitance			50			

Diode Characteristics

Symbol	Parameter Conditions		Min.	Тур.	Max.	Unit
ls	Continuous Source Current ^{1,5}	\\ -\\ -0\\			-8.0	Α
lsм	Pulsed Source Current ^{2,5}	V _G =V _D =0V , Force Current			-16.2	Α
VsD	Diode Forward Voltage ²	V _{GS} =0V , I _S =-1A , T _J =250			-1.2	V

Note:

- 1.The data tested by surface mounted on a 1 inch² FR-4 board with 2OZ copper.
- 2.The data tested by pulsed , pulse width $\leq~300 us$, duty cycle $\leq~2\%$
- 3. The EAS data shows Max. rating . The test condition is V_{DD} =-25V, V_{GS} =-10V, L=0. 1mH, I_{AS}=-24.4A
- 4. The power dissipation is limited by 1500 junction temperature
- $5. The \ data \ is \ theoretically \ the \ same \ as \ I_D \ and \ I_{DM} \ , \ in \ real \ applications \ , \ should \ be \ limited \ by \ total \ power \ dissipation.$

Typical Characteristics

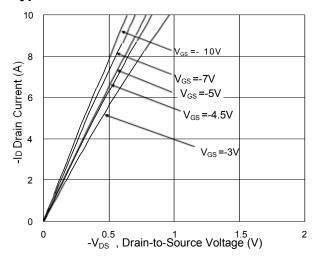


Fig. 1 Typical Output Characteristics

Fig. 3 Forward Characteristics of Reverse

Fig. 5 Normalized $V_{\text{GS(th)}}$ vs. T_{J}

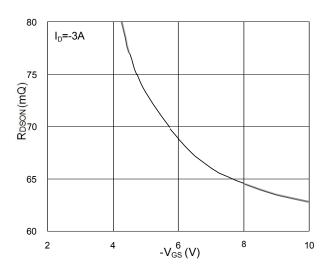


Fig.2 On-Resistance v.s Gate-Source

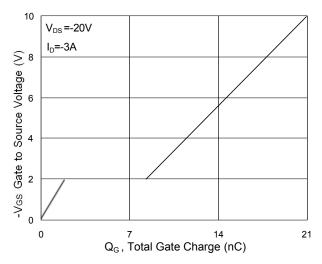


Fig. 4 Gate-Charge Characteristics

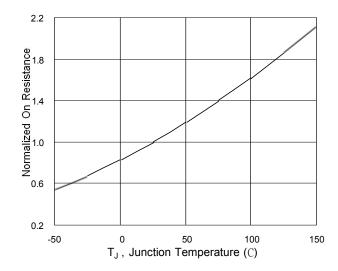
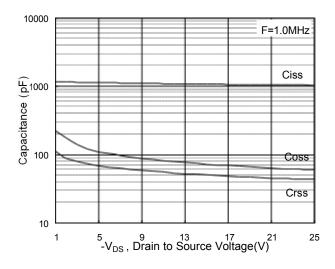
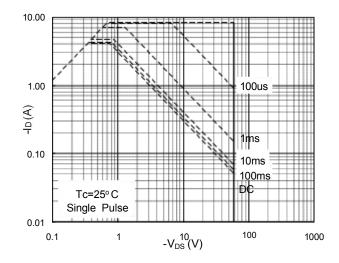




Fig. 6 Normalized R_{DSON} vs. T_J

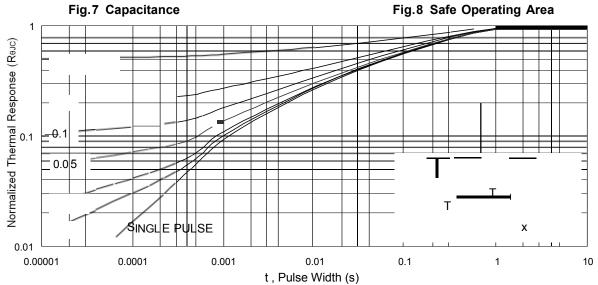
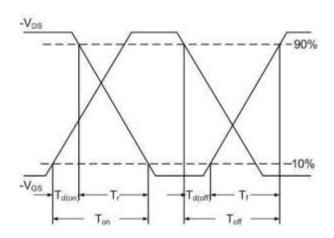
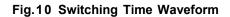




Fig. 9 Normalized Maximum Transient Thermal Impedance

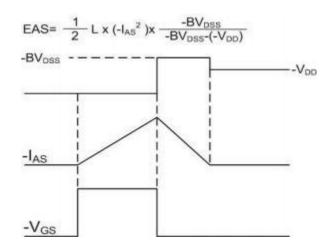
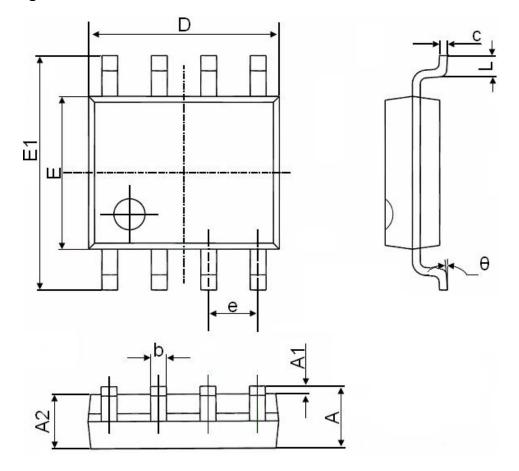



Fig.11 Unclamped Inductive Waveform

SOP-8 Package Information

Symbol	Dimensions In Millimeters		Dimensions In Inches		
Symbol	Min.	Max.	Min.	Max.	
Α	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.350	1.550	0.053	0.061	
b	0.330	0.510	0.013	0.020	
С	0.170	0.250	0.006	0.010	
D	4.700	5.100	0.185	0.200	
E	3.800	4.000	0.150	0.157	
E1	5.800	6.200	0.228	0.244	
е	1.270(BSC)		0.050(BSC)		
L	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	8°	

Attention

- 1, Any and all JGSEMI products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, orother applic ations whose failure can be reasonably expected to result in serious physical or material damage. Consult with your JGSEMI representative nearest you before using any JGSEMI products described or contained herein in such applications.
- 2,JGSEMI assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all JGSEMI products described or contained herein.
- 3, Specifications of any and all JGSEMI products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To ver ify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- 4,In the event that any or all JGSEMI products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported wit hout obtaining the export license from the authorities concerned in accordance with the above law.
- 5, No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanic al, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of JGSEMI Semiconductor CO., LTD.
- 6, Any and all information described or contained herein are subject to change without notice due to product technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the JGSEMI product that you Intend to use.