

One Cell Lithium-ion/Polymer Battery Protection IC GENERAL DESCRIPTION FEATURES

JA5088SX is a spacing saving single chip lithium-ion/polymer battery protection IC. Integrating power MOSFET and only two external components makes the protection board highly compact. JA5088SX has full protection including over charging voltage protection, over discharging protection, over current protection, short protection and over temperature protection. The very low standby current drains little current from the cell while in storage. JA5088SX is available in 8 PIN SOP8 package.

·Integrate low Rdson Pov

- ·Integrate low Rdson Power MOSFET ·SOP8_ Package
- ·Over-temperature Protection ·Two-steps Over current protection ·High-accuracy Voltage Detection ·Low Current Consumption
- Operation Mode: 2.5μA typ.
 Power-down Mode: 0.1μA typ.
 RoHS Compliant and Lead (Pb) Free

APPLICATIONS

One-Cell Lithium-ion Battery Pack Lithium-Polymer Battery Pack

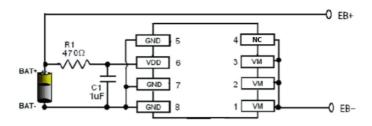


Figure 1. Typical Application Circuit

DESCRIPTION

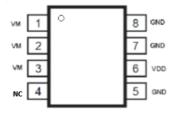


Figure 2. PIN Configuration

Number	Name	Description
1,2,3,	VM	The negative terminal of the battery pack. The internal FET switch connects this terminal to GND
5,7,8	GND	Ground, connect the negative terminal of the battery to this pin
6	VDD	Power Supply

ORDERING INFORMATION

PART NUMBE R	Pa ck ag e	Overcharg e Detection Voltage [VCU] (V)	Overchar ge Release Voltage [VCL] (V)	Overdischar ge Detection Voltage [VDL] (V)	Overdischar ge Release Voltage [VDR] (V)	Overcurr ent Detection Current [IOV1] (A)	Top Mark
JA5088SX	S O P8	4.30	4.10	2.75	3.0	6	JA5088SX

Function Block Diagram

Figure 3. Functional Block Diagram

ABSOLUTE MAXIMUM RATINGS

(Note: Do not exceed these limits to prevent damage to the device. Exposure to absolute maximum rating conditions for long periods may affect device reliability.)

PARAMETER	VALUE	UNIT
VDD input pin voltage	-0.3 to 6	V
VM input pin voltage	-6 to 12	V
Operating Ambient Temperature	-40 to 85	°C
Maximum Junction Temperature	125	°C
Storage Temperature	-55 to 150	°C
Lead Temperature (Soldering, 10 sec)	300	°C
Power Dissipation at T=25°C	0.4	W
Package Thermal Resistance (Junction to Ambient) θJA	250	°C/W
Package Thermal Resistance (Junction to Case) θJC	130	°C/W
ESD	2000	V

ABSOLUTE MAXIMUM RATINGS

0

Typically TA = 27 C, VDD=3.7V unless otherwise specified

Parameter	Symbo I	Test Condition	M in	T y p	M ax	Unit
Detection Voltage						
Overcharge Protection Voltage	V _{ocv}		4.275	4.30	4.325	V
Overcharge Protection Release Voltage	VOCR		4.05	4.15	4.25	V
Overdischarge Protection Voltag	ODV		2.65	2.75	2.85	V
Overdischarge Protection Release Voltage	V ODR		2.9	3.0	3.1	V
Charger Detection Voltage	V CHA		-0.07	-0.12	-0.2	V
Detection Current						
Class1 Overdischarge Protection Current	OCI1		5	6	7	А
Class2 Overdischarge Protection Current	OCI2		12	15	18	Α
Load Short-Circuiting	 SHORT			20		А

Detection						
Overcharge Protection Current	 CHA		5	6	7	Α
Current Consumption						
Current Consumption in Normal Operation	OPE	VM =0V		2.5		μ A
Current Consumption in power Down	I PDN	V _{DD} =2.0V VM pin floating		0.1		μ A
VM Internal Resistance						
Internal Resistance between VM and V DD	R _{VMD}	VD=3.5V VM=1.0V		320		kΩ
Internal Resistance between VM and GND	R vms	V _{DD} =2.0V VM=1.0V		100		kΩ
FET on Resistance			•	•		
Equivalent FET on Resistance	R DS(ON)	V =3.6V DD	14	16	20	mΩ
Over Temperature Protection		IVM =1.0A	<u> </u>	<u> </u>		
Over Terror and the Dark of the	Т			140		°C
Over Temperature Protection Over Temperature Recovery Degree	SHD+ T SHD-			100		•C
Detection Delay Time					<u> </u>	
Overcharge Voltage Detection Delay Time	t ocv			130		mS
Overdischarge Voltage Detection Delay Time	ODV			40		mS
Overdischarge Current1 Delay Time	t IOV1			10		mS
Overdischarge Current2 Delay Time	t IOV2			5		mS
Load Short- Circuiting Detection Delay Time	t SHORT	Vdd=3.5V		75		uS

Description of Operation

Overcharge Protection
When the voltage of the battery cell exceeds

the overcharge protection voltage (ocv)
beyond the overcharge delay time (ocv) period,
charging is inhibited by turning off power
MOSFET. The overcharge condition is

released in two cases:

1. The voltage of the battery cell becomes lower than the overcharge release voltage

OCR) through self-discharge.

2. The voltage of the battery cell falls below

the overcharge protection voltage (ocv) and a load is connected. When the battery voltage is

above ocv, the overcharge condition will not release even a load is connected to the pack.

Overdischarge Protection

When the voltage of the battery cell goes

(ODV) beyond the overdischarge delay time

(ODV) period, discharging is inhibited. Inhibition of discharging is immediately released when the voltage of the battery cell becomes higher than overdischarge release

voltage (ODR).

Overcurrent Protection

When the discharging current becomes higher than a specified Overdischarge Current and beyond over discharge current delay time period, discharging is inhibited. Inhibition of discharging is immediately released when the load is released or the impedance between EB+ and EB- is larger than $500k\Omega$. The JA5088SX provides three over current detection levels (8A, 14A and 36A) with three over current delay time (10V1, 10V2 and SHORT) corresponding to each over current detection level.

Over Temperature Protection

When IC temperature becomes higher than a specified value, JA5088SX will turn off Power MOSFET whatever in discharging or charging condition. In discharging condition, Inhibition of discharging is released when temperature lower than Over Temperature Recovery Degree (100 °C) and load also released. In charging condition, Inhibition of charging is released when temperature lower than

over temperature

recovery degree(100 °C) and charger also removed.

Over Charging Current Protection When the charging current becomes higher

than discharge protection Current (CHA) and beyond over discharge current delay time period, charging is inhibited. Inhibition of charging is immediately released when the charger is removed.

Charger detection after Overdischarge

When over discharge occurs, discharging is inhibited. However, charging is still permitted through the parasitic diode of MOSFET. Once the charger is connected to the battery pack, JA5088SX detects the voltage between VM and GND is below charge detection threshold

cha), Power MOSFET will turn voltage (on when Battery cell voltage is higher than Overdischarge Protection Voltage.

Power Saving after Overdischarge

When overdischarge occurs, the JA5088SLX will enter into power-down mode.

Timing Diagram

3. Over Discharge Current (ODC)State →Normal State

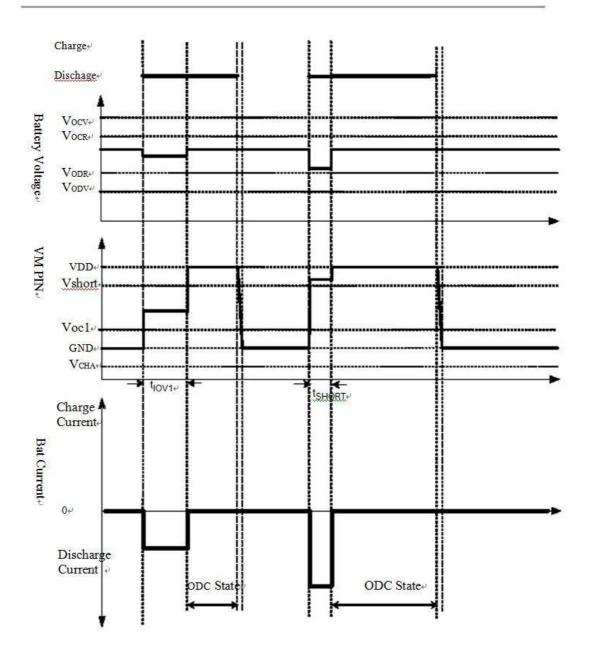


Figure 6. Over Discharge current and Normal state timing

TYPICAL APPLICATION

As shown in Figure 8, the bold line is the high density current path which must be kept as short as possible. For thermal management, ensure that these trace widths are adequate. C1 is a decoupling capacitor which should be placed as close as possible to JA5088SX.

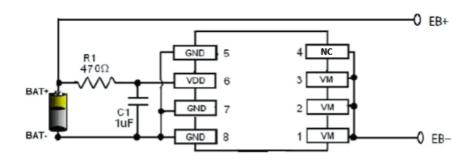
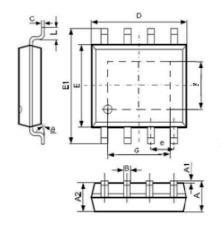
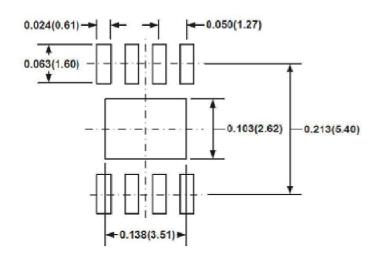


Figure 7. Typical Battery Protection Circuit


Precautions

- Pay attention to the operating conditions for input/output voltage and load current so that the power loss in JA5088SX does not exceed the power dissipation of the package.
- Do not apply an electrostatic discharge to this JA5088SL that exceeds the performance ratings of the built-in electrostatic protection circuit.



PACKAGE OUTLINE

SOP8_ PACKAGE OUTLINE AND DIMENSIONS

SYMBOL		sion in neters	Dimension in Inches		
	MIN	MAX	MIN	MAX	
A	1.35	1.75	0.053	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.350	1.550	0.053	0.061	
В	0.330	0.510	0.013	0.020	
С	0.190	0.250	0.007	0.010	
D	4.700	5.100	0.185	0.201	
E	3,800	4.000	0.150	0.157	
E1	5.800	6.300	0.228	0.248	
е	1.27 TYP		0.050 TYP		
L	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	8°	
F	2.26	2.56	0.089	0.101	
G	3.15	3.45	0.124	0.136	

备注:丝印 JA5088SX 后缀字母 X=L 或 C 代表封装厂代号,实物参数没有任何影响