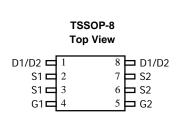
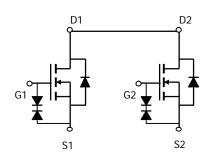


General Description

The AO8810 uses advanced trench technology to provide excellent $R_{\rm DS(ON)}$, low gate charge and operation with gate voltages as low as 1.8V. This device is suitable for use as a load switch or in PWM applications. It is ESD protected. AO8810L is offered in a lead-free package. Standard Product AO8810 is Pb-free (meets ROHS & Sony 259 specifications). AO8810L is a Green Product ordering option. AO8810 and AO8810L are electrically identical.

Features


 $V_{DS}(V) = 20V$


 $I_D = 7.0 A (V_{GS} = 4.5V)$

 $R_{DS(ON)}$ < 14m Ω (V_{GS} = 4.5V)

 $R_{DS(ON)} < 16m\Omega (V_{GS} = 2.5V)$

 $R_{DS(ON)}$ < 20m Ω (V_{GS} = 1.8V)

Absolute Maximum Ratings T _A =25°C unless otherwise noted							
Parameter		Symbol	Maximum	Units			
Drain-Source Voltage		V_{DS}	20	V			
Gate-Source Voltage		V_{GS}	±12	V			
Continuous Drain	T _A =25°C		7.0				
Current ^A	T _A =70°C	I _D	5.2	Α			
Pulsed Drain Current ^B		I _{DM}	30				
	T _A =25°C	В	1.5	10/			
Power Dissipation A	T _A =70°C	$-P_D$	1	→ W			
Junction and Storage Temperature Range		T _J , T _{STG}	-55 to 150	°C			

Thermal Characteristics								
Parameter	Symbol	Тур	Max	Units				
Maximum Junction-to-Ambient ^A	t ≤ 10s	В	64	83	°C/W			
Maximum Junction-to-Ambient ^A	Steady-State	$R_{ hetaJA}$	89	120	°C/W			
Maximum Junction-to-Lead ^C	Steady-State	$R_{\theta JL}$	53	70	°C/W			

Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units	
STATIC F	PARAMETERS							
BV_{DSS}	Drain-Source Breakdown Voltage	I _D =250μA, V _{GS} =0V		20			V	
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =16V, V _{GS} =0V T _J =55°C				1	μА	
						5		
I _{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} =±4.5V				±1	μΑ	
		V_{DS} =0V, V_{GS} =±8V			±10	μΑ		
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS}$ $I_{D}=250\mu A$		0.4	0.6	1	V	
$I_{D(ON)}$	On state drain current	V_{GS} =4.5V, V_{DS} =5V		30			Α	
R _{DS(ON)}	Static Drain-Source On-Resistance	V_{GS} =4.5V, I_D =7A			14		mΩ	
			T _J =125°C		16		1115.2	
		V_{GS} =2.5V, I_{D} =5.5A			18		mΩ	
		V_{GS} =1.8V, I_D =5A		20		mΩ		
g _{FS}	Forward Transconductance	V_{DS} =5V, I_D =7A			29		S	
V_{SD}	Diode Forward Voltage	I _S =1A,V _{GS} =0V			0.76	1	V	
Is	Maximum Body-Diode Continuous Current					2.5	Α	
	PARAMETERS							
C _{iss}	Input Capacitance	V _{GS} =0V, V _{DS} =10V, f=1MHz			1160		pF	
C _{oss}	Output Capacitance				187		pF	
C_{rss}	Reverse Transfer Capacitance				146		pF	
R_g	Gate resistance	V_{GS} =0V, V_{DS} =0V, f=1MHz			1.5		Ω	
SWITCHI	NG PARAMETERS							
Q_g	Total Gate Charge	V _{GS} =4.5V, V _{DS} =10V, I _D =7A			16		nC	
Q_{gs}	Gate Source Charge				0.8		nC	
Q_{gd}	Gate Drain Charge				3.8		nC	
$t_{D(on)}$	Turn-On DelayTime	V_{GS} =5V, V_{DS} =10V, R_L =1.35 Ω , R_{GEN} =3 Ω			6.2		ns	
t _r	Turn-On Rise Time				12.7		ns	
$t_{D(off)}$	Turn-Off DelayTime				51.7		ns	
t _f	Turn-Off Fall Time				16		ns	
t _{rr}	Body Diode Reverse Recovery Time	I _F =7A, dI/dt=100A/μs			17.7		ns	
Q_{rr}	Body Diode Reverse Recovery Charge	ge I _F =7A, dI/dt=100A/μs			6.7		nC	

A: The value of $R_{\theta,JA}$ is measured with the device mounted on 1in^2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The value in any given application depends on the user's specific board design. The current rating is based on the t≤ 10s thermal resistance rating.

B: Repetitive rating, pulse width limited by junction temperature.

C. The R $_{\theta JA}$ is the sum of the thermal impedence from junction to lead R $_{\theta JL}$ and lead to ambient.

D. The static characteristics in Figures 1 to 6,12,14 are obtained using $80\,\mu s$ pulses, duty cycle 0.5% max.

E. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The SOA curve provides a single pulse rating. Rev 3