

60V/2A, 共阳极降压型 LED 驱动芯片

特色

- 最大2A输出恒流
- 串10颗LED, 2A电流,输入电压为36V时的效率可达95%
- 宽输入电压范围4.5~60伏特
- 共阳极连接
- 采磁滞宽带可调之定频控制技术
- 可设定的恒定输出电流
- 内建0.2Ω低导通电阻的开关
- 全方位保护包括:欠电压锁定保护(UVLO)、过电流(OCP)、过热断电(TSD)、 LED开路与短路保护

GDF: DFN-10L 3*3 Small Outline Package GD: SOP-10L-150

Dual Flat No-lead

产品说明

MBI6662为高效率恒流降压型 DC/DC 转换器驱动芯片,其适用于驱动高功率 LED, 并采用磁滞宽带可调之定频控制技术及提供共阳极连接方案。

MBI6662输出电流可透过外部电阻进行设定,且可在 DIM 脚连接脉宽调变(PWM)讯号进行调光控制。另外,启动过流保护装置(Start-Up)功能可限制芯片因电源启动时所产生的突波电流,同时 MBI6662 还提供欠电压锁定保护(UVLO)、过温保护(OTP)及过电流保护功能(OCP),以避免芯片在不正常运作的情况下损毁。.

为确保系统稳定性,MBI6662还提供过热断电保护功能(TSD),在过热的条件下,藉由关断内建MOSFET,以达到保护芯片的目的。MBI6662目前提供散热性佳的DFN-10和SOP-10两种封装。

应用

- 舞台灯
- 高功率LED洗墙灯
- 车用LED照明
- 灯源采共阳极并联架构之灯具

脚位图

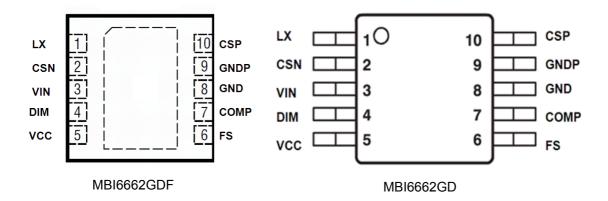


图 1 MBI6662脚位图

脚位说明

脚位名称	功能
LX	内建 MOSFET 汲极端
CSN	侦测萧特基二极管电流端
VIN	电源电压端
DIM	PWM 调光讯号输入端
VCC	内部调节器输出端
FS	设定切换频率端
COMP	补偿器端
GND	仿真讯号接地端
GNDP	电源讯号接地端
CSP	电流侦测电阻端

^{*}为了减少噪声干扰,建议将散热片与 PCB 上的 GND 连接。此外,PCB 上作为热传导用途的铜导线上焊接散热片,热传导功能将可改善。

应用电路图

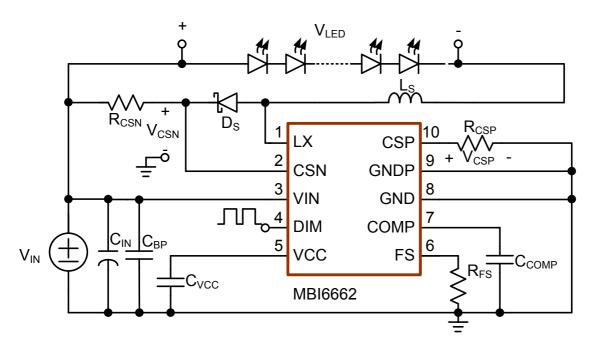


图2 MBI6662应用电路示意图

功能方块图

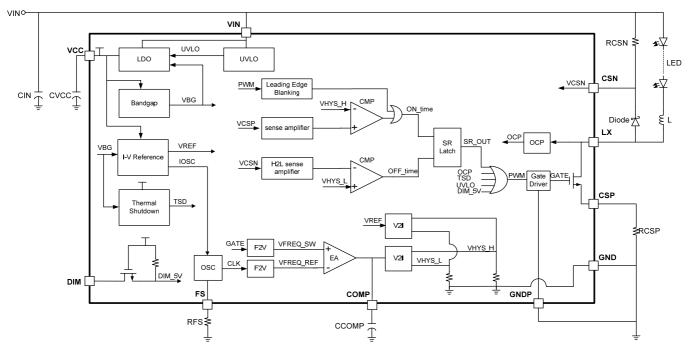


图 3 MBI6662 功能方块图

最大限定范围

超过最大限定范围内工作,将会损害芯片运作。操作在建议电压至最大限定范围时会降低其稳定度。

特性		代表符号	最大工作范围	单位
电源电压		V _{IN}	-0.3~75	V
DIM 脚位的耐受电压		V_{DIM}	-0.3~75	V
LX 脚位的耐受电压	V _{LX}	-0.3~75	V	
CSN 脚位的耐受电压	V _{CSN}	-0.3~75	V	
CSP 脚位的耐受电压	V _{CSP}	-0.3~7	V	
VCC 脚位的耐受电压		V _{CC}	-0.3~7	V
COMP 脚位的耐受电压		V_{COMP}	-0.3~7	V
FS 脚位的耐受电压		V _{FS}	-0.3~7	V
消耗功率 (在四层印刷电路板上,Ta=25°C)*	GDE Typo	P_D	2.67	W
热阻值 (在四层印刷电路板上仿真时)*	GDF Type	$R_{th(j-a)}$	47.85	°C/W
消耗功率 (在四层印刷电路板上,Ta=25°C)*	OD Town	P_{D}	3.13	W
热阻值 (在四层印刷电路板上仿真时)*	GD Type	R _{th(j-a)}	40	°C/W
接面温度		$T_{j,max}$	150***	°C
芯片工作时的环境温度		T_{opr}	-40~+85	°C
芯片储存时的环境温度		T _{stg}	-55~+150	°C

^{*}模拟时,PCB尺寸为76.2mm*114.3mm。参考JEDEC JESD51标准。

^{**}此为最大限定范围值,并非芯片工作时温度,越接近此最大范围值操作,芯片的寿命越短、可靠度越低;超过此最大限定范围工作时,将会影响芯片运作并造成毁损,因此建议的芯片工作温度(T_{orf})在 125°C 以内。

注: 散热表现是与散热片面积、PCB层数与厚度相关。实测热阻值会与模拟值有所不同。使用者应根据所欲达到的散热表现,选择合适的封装与PCB布局,以增加散热能力。

电气特性

测量条件为 V_{IN} =12V、 V_{OUT} =3.6V、L1=68 μ H、 C_{IN} = C_{OUT} =10 μ F、 C_{VCC} =1 μ F、 T_A =25°C;除非其它条件定义。

特性	代表符号	测量条件	最小值	一般值	最大值	单位
直流特性	•					
电源电压	V _{IN}	-	4.5	-	60	V
供应电流	I _{DD}	V _{IN} =4.5V~60V, F _{SW} =100kHz	-	1.5	2.5	mA
输出端电流	I _{OUT}	请参阅第 19 页 derating 信息	-	-	2.0	Α
输出端电流精确度	dl _{OUT} /l _{OUT}	0.35A≤I _{OUT} ≤2A	-	±2	±5	%
MOSFET 导通电阻	R _{DS,ON}	I _{OUT} =350mA	-	0.2	0.5	Ω
MOSFET 漏电流	I _{LEAK}	V _{LX} =60V	-	0.1	1.0	μA
效率	-	V _{IN} =36V, I _{OUT} =2A, 10LEDs	-	95	-	%
切换特性			•			
LX 上升时间	T _{R_LX}	-	-	-	20	ns
LX下降时间	T _{F_LX}	-	-	-	20	ns
占空比建议值	D _{LX}	-	10		90	%
操作频率	F _{SW}	-	0.1	-	1.0	MHz
电流侦测			•	•	•	
侦测电压平均值	V _{CS}	-	95	100	105	mV
低边磁滞电压	V _{CSP}	正常平均电流侦测下	5	-	80	%
高边磁滞电压	V _{IN} -V _{CSN}	正常平均电流侦测下	5	-	80	%
CSP 传送延迟时间	T _{PPD}	LX 至 V _{IN}	-	100	-	ns
CSN 传送延迟时间	T _{NPD}	LX 至 GND	-	100	-	ns
高边讯号前缘遮蔽时间	T _{LEB_H}	-	-	280	-	ns
低边讯号前缘遮蔽时间	T _{LEB_L}	-	-	180	-	ns
过热保护(TSD)	•	·				
过热保护关闭值*	T _{SD}	-	145	155	175	°C
过热保护关闭之磁滞范围 (Hysteresis)*	T _{SD-HYS}	-	20	30	40	°C
欠电压锁定 (UVLO)						
欠电压锁定电压	V_{UVLO}	T _A =-40~85°C	-	4.1	-	V
启动电压	V _{STUP}	-	-	4.4	-	V
过电流保护 (OCP)						
过电流保护关闭值*		-	-	3.0	-	Α
PWM 调光	-		<u>'</u>	•		
PWM 占空比范围	D_{DIM}	PWM 频率: 0.1kHz~1kHz	1	_	100	%
PWM 讯号高准位	V _{IH_DIM}	V _{IN} =4.5V~60V	2.5	_	-	V
PWM 讯号低准位	V _{IL_DIM}	V _{IN} =4.5V~60V	-	-	0.8	V
调节器		1	•			
调节器电压	V _{CC}	V _{IN} =4.5V,I _{LOAD} =2mA	-	4.2	-	V
	V _{CC}	V _{IN} =6V~60V, I _{LOAD} =2mA	4.5	5.0	5.5	V

^{*}参数在生产过程中未经测试,为设计值。

一般表现特性

效率 vs. 输入端电压 @不同 LED 串联颗数

 $R_{CSP} = R_{CSN} = 100 m\Omega (1A)/66 m\Omega (1.5A)/50 m\Omega (2A), \ R_{FS} = 300 k\Omega, \ L = 68 \mu H, \ C_{COMP} = 4.7 nF, \ C_{VCC} = 1 \mu F, \ C_{IN} = 10 \mu F.$

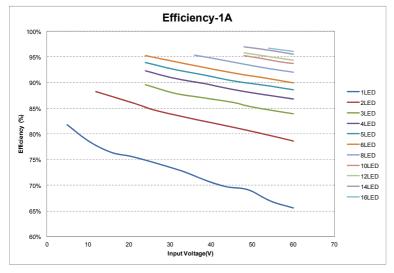


图 4 MBI6662 转换效率(输出电流 1 安培)

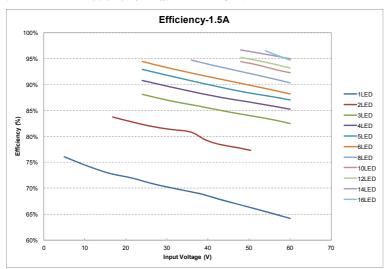


图 5 MBI6662 转换效率 (输出电流 1.5 安培)

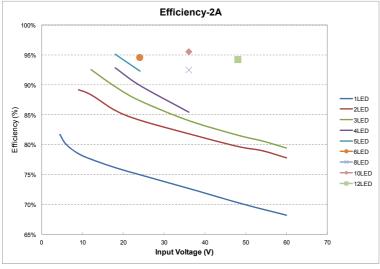


图 6 MBI6662 转换效率(输出电流 2 安培)

输出电流 vs. 输入电压 (线性调整率)

 $R_{CSP} = R_{CSN} = 100 m\Omega (1A)/66 m\Omega (1.5A)/50 m\Omega (2A), \ R_{FS} = 300 k\Omega, \ L = 68 \mu H, \ C_{COMP} = 4.7 nF, \ C_{VCC} = 1 \mu F, \ C_{IN} = 10 \mu F.$

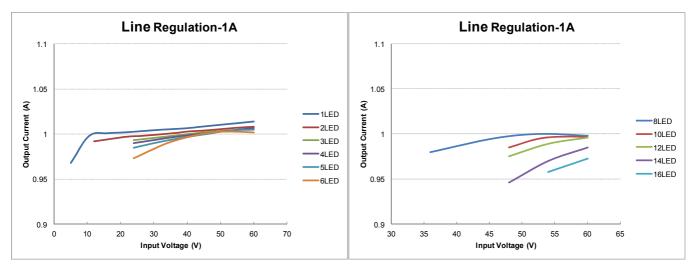


图 7 MBI6662 线性调整率(输出电流 1 安培)

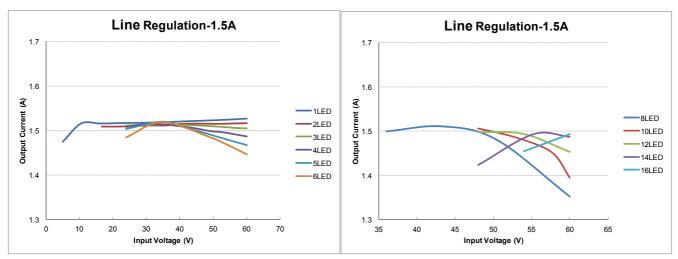


图 8 MBI6662 线性调整率 (输出电流 1.5 安培)

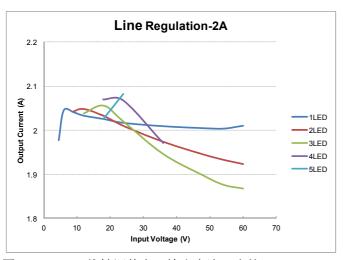


图 9 MBI6662 线性调整率(输出电流 2 安培)

输出电流 vs. 温度变异量

 $V_{\text{IN}} = 12 \text{V}, \text{ 1 LED}, \text{ R}_{\text{CSP}} = \text{R}_{\text{CSN}} = 50 \text{m}\Omega, \text{ R}_{\text{FS}} = 300 \text{k}\Omega, \text{ L} = 68 \mu\text{H}, \text{ C}_{\text{COMP}} = 4.7 \text{nF}, \text{ C}_{\text{VCC}} = 1 \mu\text{F}, \text{ C}_{\text{IN}} = 10 \mu\text{F}.$

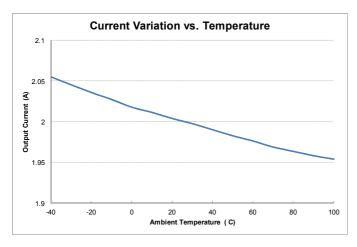


图 10 输出电流 vs. 温度变异量

输出电流 vs. 电感变异量

 V_{IN} =12V, 1 LED, R_{CSP} = R_{CSN} =50m Ω , R_{FS} =300k Ω , L=4.7 μ H~100 μ H, C_{COMP} =4.7nF, C_{VCC} =1 μ F, C_{IN} =10 μ F.

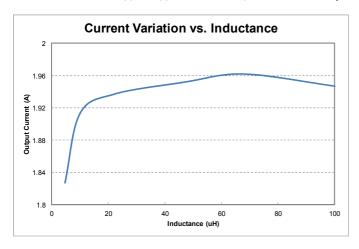


图 11 输出电流 vs. 电感变异量

调光线性度

 $V_{\text{IN}} = 12 \text{V}, \ 1 \text{ LED}, \ R_{\text{CSP}} = R_{\text{CSN}} = 50 \text{m}\Omega, \ R_{\text{FS}} = 300 \text{k}\Omega, \ C_{\text{COMP}} = 4.7 \text{nF}, \ C_{\text{VCC}} = 1 \mu\text{F}, \ C_{\text{IN}} = 10 \mu\text{F}.$

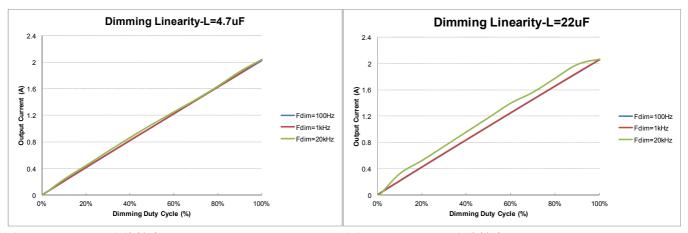


图 12 MBI6662 调光线性度(L=4.7µH)

图 13 MBI6662 调光线性度(L=22µH)

切换波形

 $V_{\text{IN}}=12V,\ V_{\text{LED}}=3.5V,\ R_{\text{CSP}}=R_{\text{CSN}}=50 \text{m}\\ \Omega(I_{\text{LED}}=2A),\ R_{\text{FS}}=300 \text{k}\\ \Omega,\ L=4.7 \mu\sim100 \mu\text{H},\ C_{\text{COMP}}=4.7 \text{nF},\ C_{\text{VCC}}=1 \mu\text{F},\ C_{\text{IN}}=10 \mu\text{F}.$

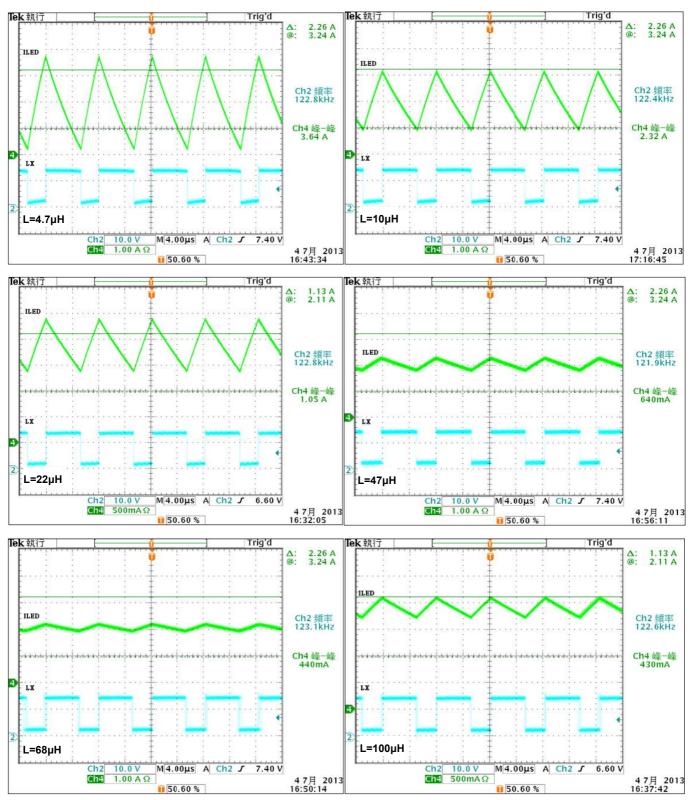


图 14 MBI6662 于不同电感条件下之切换波形(L=4.7μH~100μH)

电源启动及关闭波形

 $V_{\text{IN=}}6V,\ V_{\text{LED}}\text{=}3.5V,\ R_{\text{CSP}}\text{=}R_{\text{CSN}}\text{=}50m\Omega\\ (I_{\text{LED}}\text{=}2A),\ R_{\text{FS}}\text{=}300k\Omega,\ L\text{=}22\mu\text{H},\ C_{\text{COMP}}\text{=}4.7n\text{F},\ C_{\text{VCC}}\text{=}1\mu\text{F},\ C_{\text{IN}}\text{=}10\mu\text{F}.$

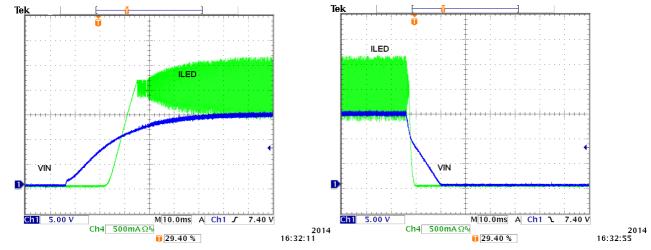


图15 MBI6662电源启动及关闭波形

固定切换频率操作

 $R_{CSP} = R_{CSN} = 50 m\Omega (I_{LED} = 2A), \ R_{FS} = 300 k\Omega, \ L = 22 \mu H/68 \mu H, \ C_{COMP} = 4.7 nF, \ C_{VCC} = 1 \mu F, \ C_{IN} = 10 \mu F.$

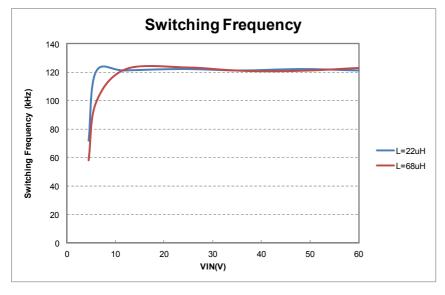


图16 宽输入电压范围下为定频操作

产品应用信息

MBI6662 是一个高功率定电流且高效率的降压式转换器,并具有高达2安培的负载电流驱动能力,其创新的磁滞宽带可调之定频控制技术具有高速负载响应,共阳极连接方案则可多组模块并联使用时,达到节省连接线的目的。MBI6662 同时提供欠电压锁定保护、过温保护及过电流保护的功能,以预防转换器在异常操作时发生烧毁的现象。

设定输出电流

在传统的磁滞频率调变控制架构下,切换频率会随着不同的输入电压或输出电压而改变。MBI6662 基于磁滞频率调变控制架构下,使用创新的频固定技术降低切换频率对输入输出电压的敏感性。根据公式(1),为了在不同输入电压维持固定频率,磁滞调变的范围(ΔHYS)是必须可以调整的(假设电感值 L_S、V_{LED}与 I_{LED}不变的情况下)。MBI6662 可以自行进行 5%到 80%磁滞范围的调整, 以满足不同的应用。

$$f_{S} = \frac{(V_{IN} - V_{LED}) \frac{V_{LED}}{V_{IN}}}{\Delta HYS \times L \times I_{LED}}$$
(1)

其中 f_S 为切换频率,而磁滞调变的范围 $\Delta HYS = \Delta I_{HYS}/I_{LED}$,其中 ΔI_{HYS} 为磁滞控制的电流变化量,如图 17 所示。

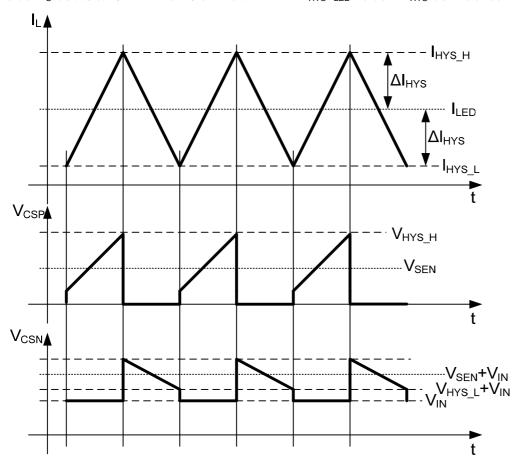


图 17 MBI6662 控制架构的操作波形

图 2 为 MBI6662 的应用电路示意图,当电源启动时,内建 MOSFET 会被导通,电感则经由输入直流电压 V_{IN} 进行储能。而电流会流经 LED 负载、电感 L_S 及内建 MOSFET,最后流过 R_{CSP} 回到 GND。随着电感电流上升, V_{CSP} 的电压也会跟着上升,当 V_{CSP} 电压达到 V_{HYS_H} ,MOSFET 则会被关闭,而飞轮二极管会被导通,此时电感开始释能,电感电流开始下降,直到 V_{CSN} 电压低于 V_{HYS_L} + V_{IN} ,如图 17 所示。

由图 2 及图 17 可得到平均输出电流 ILED,如公式(2)所示

$$I_{LED} = \frac{1}{2} (I_{HYS_H} + I_{HYS_L}) = \frac{1}{2} (\frac{V_{HYS_H}}{R_{CSP}} + \frac{V_{HYS_L}}{R_{CSN}}) ...$$
(2)

其中

$$\begin{aligned} &V_{HYS_H} = (1 + \Delta HYS) \times V_{SEN} \\ &V_{HYS_L} = (1 - \Delta HYS) \times V_{SEN} \end{aligned} \tag{3}$$

接着输出 LED 电流可由下式计算得知

$$I_{LED} = \frac{V_{SEN}}{2} \left(\frac{(1 + \Delta HYS)}{R_{CSP}} + \frac{(1 - \Delta HYS)}{R_{CSN}} \right)$$
 (4)

为了简化公式 (4), R_{CSP} 与 R_{CSN} 使用相同阻值 R_{SEN}带入公式(4),可得到输出电流如下

$$I_{LED} = \frac{V_{SEN}}{R_{SEN}}$$
 (5)

其中 V_{SEN} 为芯片内部的参考电压 100mV, 而 R_{CSP}=R_{CSN}=R_{SEN}.

定频控制技术

MBI6662 藉由 R_{FS} 的选择,提供一个固定的参考频率,而芯片内部会透过误差放大器把系统的切换频率与 R_{FS} 所决定的参考频率做比较,以控制电感电流的磁滞范围,达到定频的目的,如图 **18** 所示。针对不同应用,更详细的切换频率建议请参阅 "MBI6662 应用手册 "及 "MBI6662 设计工具 "。

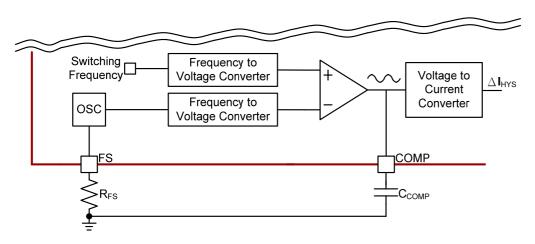
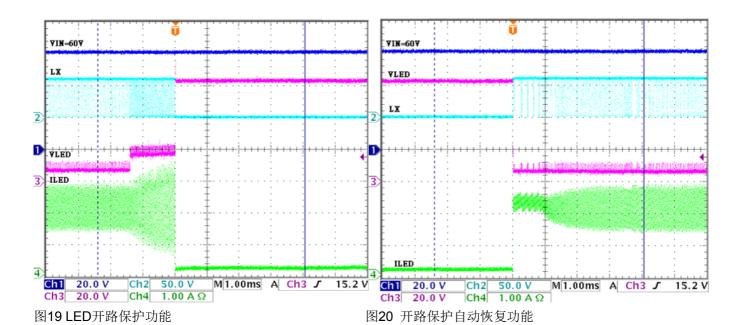


图 18 MBI6662 定频控制技术

共阳极连接方案

传统高边采样和低边采样之降压型转换器,由于侦测电阻的关系,输出端LED往往无法直接连至输入端。然而,当有N组电源模块并联操作时,因为每串LED之阳极皆为独立电位,所以总共需要2N条连接线来进行连结。MBI6662提供共阳极连接方案,在上述范例中,因为每串LED之阳极皆为相等电位,所以总共仅需N+1条线即可进行连结。

调光控制


LED的亮度可以透过连接至MBI6662 DIM脚以PWM讯号进行调光。当PWM讯号为Low时(低于0.8V),MBI6662内部的 MOSFET会关掉并且停止提供电流给LED,而当PWM讯号为High时(高于2.5V),电路则会恢复正常操作。MBI6662 内置的pull-up电路可确保DIM脚空接时保持开启状态,所以不须外挂pull-up电阻。图12及图13为比较两种不同电感值和不同调光频率下之调光表现。如何选定较佳的调光设计,请参阅 "MBI6662应用手册 "和 "MBI6662设计工具 "。

欠电压锁定保护功能

当MBI6662 VIN电压低于4.1V(标准值)时,其输出电流会自动关闭,等到VIN电压上升至至4.4V(标准值)时,MBI6662 才会自动重启输出电流。

LED 开路保护功能

当 LED 开路时,MBI6662 内部的 MOSFET 会停止切换动作并将 LED 电流降至 0mA,以预防输出电容电压过高,如图 19 所示。而当开路故障排除后,MBI6662 将会自动恢复正常操作,如图 20 所示。

LED 短路保护功能

当LED短路时,其MBI6662内部的MOSFET会维持切换的动作, LED电流会维持在设定的电流值。若是发生VIN与LX 脚位短路时,MBI6662将会关闭芯片内部的MOSFET,以保护LED发生过电流烧毁的现象,如图22所示。

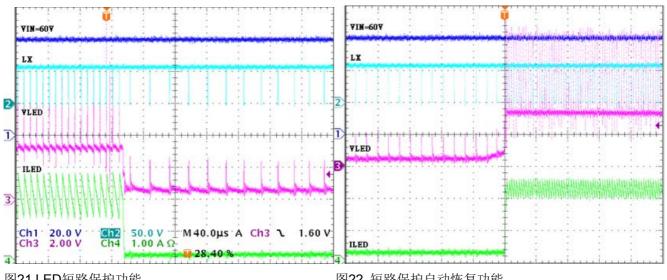


图21 LED短路保护功能

图22 短路保护自动恢复功能

过电流保护

MBI6662也提供LED过电流保护的功能,以避免芯片因过大的电流流入而遭受毁损。当过大电流流入MBI6662功率开 关时,并达到内部预设的临界值3A后,MBI6662将主动关闭功率开关以防止进一步的烧毁危险。使用者仅需将输入电 源再做关闭与再启动即可解除锁定情况。

过热保护功能 (TSD)

当芯片温度超过Tx临界值(155°C)时,过热保护功能会关闭输出端电流,让芯片温度下降。一旦温度低于135°C时,输 出端电流将再开启恢复正常操作。

设计考虑

电感最小值可藉由代入适当的 ΔHYS 至公式(1)取得。为了避免电感的峰值电流超过电流保护的临界值(I_{OCP}),如图 24 所示,一般而言,建议使用将 ΔHYS 设定在 50%以下,如图 23 所示。当峰值电流超过 I_{OCP} 时,MBI6662 OCP 功能将会启动。而当波谷电流低于零,MBI6662 的操作模式将由 CCM 进入 DCM,而系统会处带一个不稳定状态下,且降低输出电流的精准度。

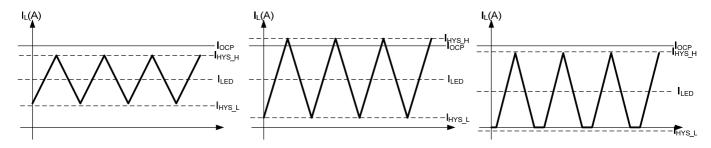


图 23 正常操作波形 (ΔHYS<0.5xl_{OCP}) 图 24 OCP 触发 (I_{HYS H}<I_{OCP})

图 25 非连续导通模式(I_{HYS L}<0)

组件选择

设定输出电流

如公式(5)所示,将 V_{SEN} 电压除以预计输出的电流值 I_{LED} 即可得到 R_{SEN},将 R_{CSP} 与 R_{CSN} 设为 R_{SEN} 之电阻值可达到所要求之输出电流,为提高电流精准度建议使用 1%误差的精密电阻。而跨在电阻两端一电压 V_{SEN} 为 100mV,因此电阻所承受的功率为 P_{RSEN}=(V_{SEN}²/R_{SEN}),建议选用 2.5 倍的 P_{SEN} 以上的功率电阻,以避免电阻因为环境温上升,造成其额定功率下降。若电阻功率不足,建议将电阻并联使用,以避免电阻因过热烧毁。

设定切换频率

切换频率可由 R_{FS} 所设定,R_{FS} 与频率的关系,请参考图 26。切换频率的快慢关系着效率与调光的分辨率。若使用在输出电流 2 安培的应用,建议切换频率在 100kHz,而切换频率 500kHz 以上之应用,输出电流建议以不超过 1 安培为原则。请注意在决定频率时,要确认系统操作是否还在磁滞范围之内,否则切换频率将无法固定。

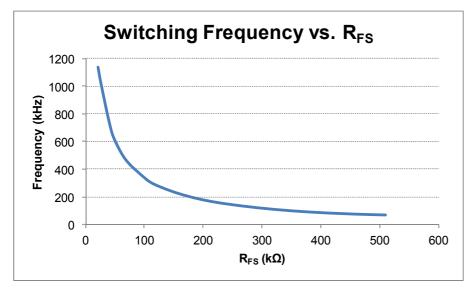


图 26 RFS 电阻与设定率关系图

选择电感

当频率决定以后,根据用户决定可以接受的磁滞范围 ΔHYS,代入公式(1),即可得到电感值。选择电感时,电感值并非唯一的考虑,还必须留意饱和电流的大小。建议电感的饱和电流至少须大于电感电流峰值(IHYS_H)的 1.25 倍。另外,电感值越大其输出电流的线性及负载调整率会越好,但在相同体积的情形下,电感值越大,其饱和电流越小,这是使用者必须考虑的地方。同时为了在 EMI 上有较好的表现,建议选用有屏蔽的电感以降低干扰。

选择输入电容

当 MOSFET 开启时,输入电容 CIN 可以提供瞬间的能量给 MBI6662 使用,反之当 MOSFET 关闭时,输入电源将会 对输入电容充电。为系统的稳定性考虑,输入电容的建议值为 10μF,但可视系统的规格进行调整,而输入电容的额定 电压应为输入电压的 1.5 倍。

考虑组件取得的方便性与成本,电解电容是一个不错的选择。电解电容的优点为电容值大且容易取得且价格便宜,但在高温环境有组件寿命缩短的疑虑。陶瓷电容则具有良好的高频特性,体积小,ESR小,但在热插入应用上,须增加瞬时电压抑制器(TVS),抑制热插入情况下电容与电源在线的寄生电感所造成的突波。如何选定较佳的电容型式可参阅"MBI6662应用手册"。

选择萧特基二极管

当 MOSFET 关闭时,电感将会透过飞轮二极管形成一个放电的路径,以维持 LED 的电流回路。为提高效率,建议使用具有低顺向偏压与反应时间快速的萧特基二极管。选用萧特基二极管有两个因素需要考虑,一个是其最大的逆向电压,建议值为输入电压的 1.5 倍;另外一个是其最大的顺向导通电流,建议值为电感电流峰值(I_{HYS H})的 1.25 倍。

选择 C_{COMP} 电容

在 MBI6662 频率控制技术中,需要一个电容做为整个系统频率回授的补偿器。这个电容的大小决定了回授补偿的带宽,电容越大回应越慢,反之亦然。换句话说,电容较大其切换频率展频的现象较轻微,电容较小其展频现象较明显。此电容值建议为 4.7nF。

选择 Cvcc 电容

在 MOSFET 开启时, C_{VCC} 电容提供瞬间的瞬时电流给 MBI6662 的闸极驱动器,使 MOSFET 可以快速的导通。一般建议值为 $1\mu F$,但操作在低电压输入时驱动能力较弱,可适当的增加电容值,以避免 VCC 电压被拉到 UVLO 之下,导致 IC 重新启动。

选择输出电容(选用)

在 LED 旁并联输出电容可降低 LED 的涟波电流,容值越大 LED 的涟波电流越小。一般而言,建议使用电解电容或陶 瓷电容,建议值为 10μF,可视输出涟的容许度增加。但电容值的大小将会影响到调光的分辨率,若需要高分辨率调光 之应用,不建议放置输出电容。输出电容的选用,须考虑其额定电压,建议为输出电压的 1.5 倍。

电路布线考虑注意事项

好的电路布局对效率与系统的稳定性有很大的说明,以下提供几个电路布局的注意事项供用户参考。

- 1. 芯片的 GND 与 GNDP 脚位请直接短路,并以最短路径连接至输入电容负端,且尽可能保持地平面的完整性。
- 2. 为提供输出电流的精准度,将 RCSN 与 RCSP 尽量放置靠近芯片的 CSN 与 CSP 脚位,并以短而宽的方式进行连接。
- 3. 输入电容请放置于最靠近芯片 VIN 脚位的地方,若因 PCB 尺寸与机构之限制,请务必在靠近 VIN 脚位的地方,增加一个旁路电容(建议可用 0.1μF 陶瓷电容)。
- 4. 为清除切换时所造成的噪声干扰,请将芯片的 SW 脚位、电感和萧特基二极管的连接点面积尽量缩小。
- 5. 为消除布局接线时所产生的寄生组件,如杂散电感与寄生电容,影响系统的稳定性,请将流经大电流的路径以短 而宽的原则进行布线。
- 6. 进行多组模块并联设计时,接地方式的好坏决定了模块日是否会有互相干扰的问题。各组地平面的连结采用并联单点接地的方式进行,如图 27(a)所示,并且尽量以短而宽的走线方式实现。多组 MBI6662 并联使用的 PCB 布局如图 28 所示。

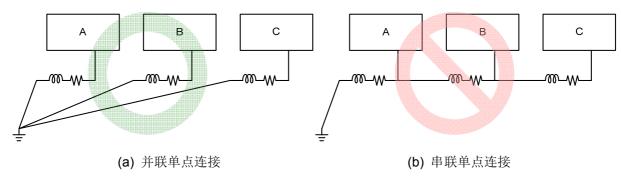
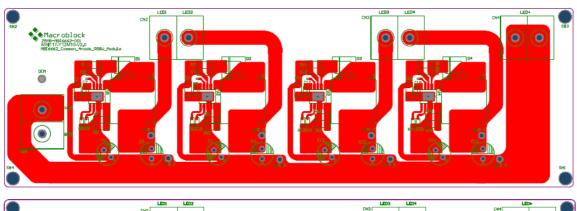



图 27 单点接地法示意图

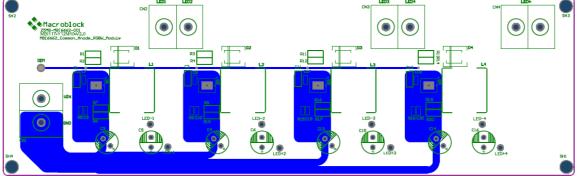
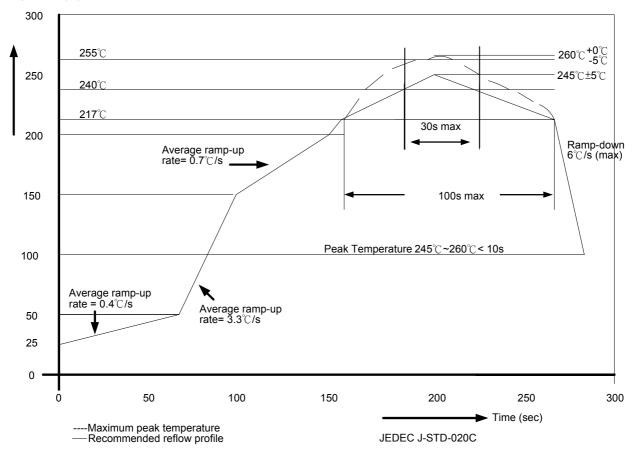
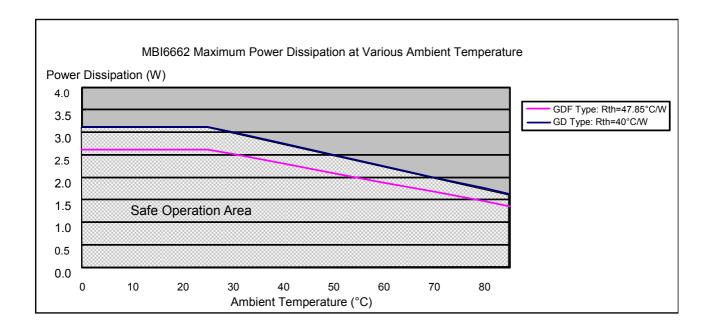



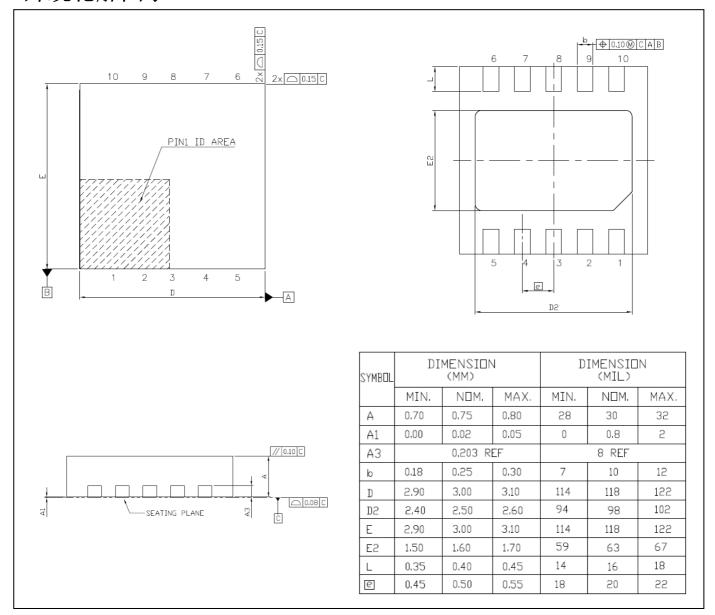
图 28 MBI6662 多组模块连接应用布线范例

"Pb-free & Green" 之封装焊接制程*

聚积科技所生产的" Pb-Free & Green"的半导体产品遵循欧洲 RoHS 标准,封装选用 100%之纯锡以兼容于目前锡铅 (SnPb)焊接制程,且支持需较高温之无铅制程。纯锡目前已被欧美及亚洲区的电子产品客户与供货商广泛采用,成为取代含锡铅材料的最佳替代品。100%纯锡可生产于含锡铅(SnPb)锡炉制程,锡炉温度请参考 JEDEC J-STD-020C 标准规定。但若客户使用完全无铅锡膏和材料,则锡炉温度须达 JEDEC J-STD-020C 标准之 245°C 至 260°C (参阅下图)。

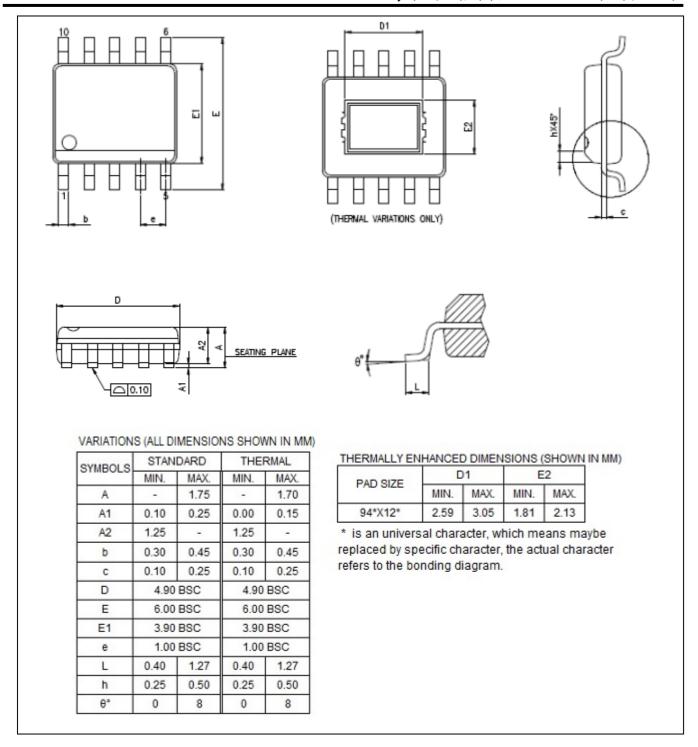


Package Thickness	Volume mm ³ <350	Volume mm ³ 350-2000	Volume mm ³ ≥2000
<1.6mm	260 +0 °C	260 +0 °C	260 +0 °C
1.6mm – 2.5mm	260 +0 °C	250 +0 °C	245 +0 °C
≧2.5mm	250 +0 °C	245 +0 °C	245 +0 °C


^{*}注:详情请参阅聚积科技之"Pb-free & Green Package"政策。

封装散热功率 (PD)

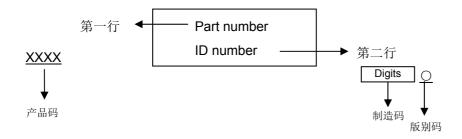
依据 $P_D(max)=(Tj-Ta)/R_{th(j-a)}$,被允许的最大散热功率会随环境温度增加而降低。



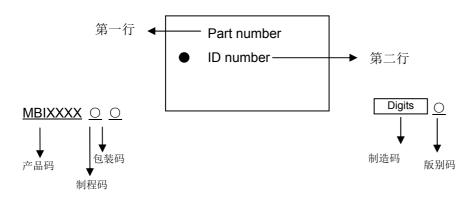
外观轮廓图示

MBI6662GDF 外观轮廓图

注: 散热片布局须采用最大尺寸范围,且为防止短路,应避免线路设计经过散热片的最大尺寸范围。



MBI6662GD 外观轮廓图


注: 散热片布局须采用最大尺寸范围,且为防止短路,应避免线路设计经过散热片的最大尺寸范围。

芯片正印信息

GDF (DFN-10L)

GD(SOP-10L)

产品更新纪录

文件版次	芯片版别码
V1.00	Α
V1.01	Α

产品订购信息

产品型号	环保包装	重量(g)
MBI6662GDF-A	DFN-10L 3*3	0.02165
MBI6662GD-A	SOP-10L-150	0.0768

^{*}请在您的订购单(PO)上,务必标示您的"产品订购编号"信息。

使用权声明

聚积科技对于产品、档案以及服务保有一切变更、修正、修改、改善、以及终止的权利。客户在进行产品购买前,建议与聚积科技业务代表联络以取得最新的产品信息。

聚积科技的产品,除非经过聚积合法授权,否则不应使用于医疗或军事行为上,若使用者因此导致任何身体伤害或生命威胁甚至死亡,聚积科技将不负任何损害赔偿责任。

此份档案上所有的文字内容、图片、及商标为聚积科技所属之智慧财产。除非是先经过聚积合法授权,任何人不得径自使用、修改、重制、公开、改作、散布、发行、公开发表。如有违反,您应对聚积科技股份有限公司负责损害赔偿责任及其它法律责任。