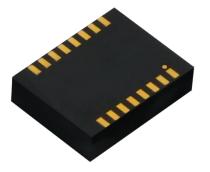
MORNSUN®

TD(H)541S485H DFN 封装 RS485 隔离收发器

特点


产品外观

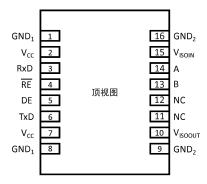
- 超小, 超薄, 芯片级 DFN 封装
- 符合 TIA/EIA-485-A 标准
- 集成 5V 高效隔离电源
- I/O 电压范围支持 3.3V 和 5V 微处理器 (当使用 5V 微处理器时 RXD 可直接连接。 当使用 3.3V 微处理器时, RXD 应用参考"使用建议第⑤点")
- 隔离耐压高达 3000VDC (TDH541S485H 5000VDC)
- 总线静电防护能力高达 15kV(HBM)
- 通讯速率高达 1Mbps
- > 25kV/µs 瞬态抗扰度
- 极低通讯延时
- 1/8 单位负载,总线负载能力高达256节点
- 总线失效保护
- 总线驱动短路保护
- 工业级工作温度范围: -40℃ to +105℃
- 符合 AEC-Q100 标准
- 满足 EN62368 标准
- 潮敏等级(MSL) 3

应用范围

- 工业自动化
- 楼宇自动化
- 智能电表
- 远距离信号交互、传输

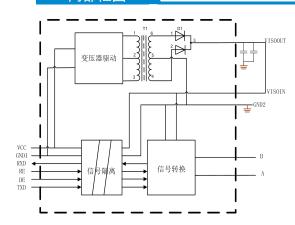
功能描述

TD(H)541S485H 是为 RS-485 总线网络设计的一款隔离型半双工增强型收发器,且完全符合 TIA/EIA-485A 标准。逻辑侧支持 3.3V 和 5V 逻辑电平的转换,总线接收器采用 1/8 单元负载设计,其总线负载能力高达 256 个节点单元,满足多节点设计设计需求。总线传输速率高达 1Mbps。


TD(H)541S485H 更在传统 IC 基础上重点加强 A、B 引脚可靠性设计,其中包括驱动器过流保护,增强型 ESD 设计等,其 A、B 端口 ESD 承受能力高达 15KV (Human Body Model)。

目录

1	首页		1
	1.1	特点及外观	1
	1.2	应用范围	1
	1.3	功能描述	1
2	引脚	封装及描述	2
3	IC 框	目关参数	3
	3.1	极限额定值	3
	3.2	推荐工作参数	3
	3.3	电学特性	4
	3.4	传输特性	5
	3.5	物理特性	5


4	特征曲线	5
	4.1 典型曲线	5
	4.2 参数测量电路	5
5	工作描述及功能	6
6	应用电路	7
7	使用建议	7
8	订购信息	8
9	封装信息	8
10	· 包装信息	9

引脚封装

注: 所有 GND1 内部是相连的; 所有 GND2 内部是相连的。

内部框图

真值表

字母	描述
Н	高电平
L	低电平
X	无关
Z	高阻抗

表 1. 驱动器真值表

信号输入	使能输入	輸出		
信号输入 (TXD)	(DE)	Α	В	
Н	Н	Н	L	
L	Н	L	Н	
X	L	Z	Z	
OPEN	Н	Н	L	

表 2. 接收器真值表

差分输入 VID = (VA – VB)	使能输入(RE)	信号输出(RXD)
-0.01 V ≤ ViD	L	Н
-0.2 V < V _{ID} < -0.01 V	L	不确定的
V _{ID} ≤ −0.2 V	L	L
开路	L	Н
短路	L	Н

MORNSUN®

广州金升阳科技有限公司 MORNSUN Guangzhou Science & Technology Co., Ltd.

引脚描述

引脚编号	引脚名称	功能描述
1	GND₁	逻辑侧参考地。
2	Vcc	逻辑侧供电引脚。靠近该引脚须接入 0.1uF 陶瓷电容到逻辑侧参考地 (GND1)。
3	RXD	接收器信号输出引脚。
4	RE	接收器使能引脚。 RE 为低电平,当(A - B)≥ -10mV,RO 输出为高电平,当(A - B)≤-200mV,RO 输出为低电平。
5	DE	驱动器使能引脚。当 DE 为高电平时,驱动器输出使能;当 DE 为低电平时,驱动器输出为高阻抗;当 DE 为低电平,且RE 为高电平时,进入关断模式。
6	TXD	驱动器输入引脚。
7	Vcc	逻辑侧供电引脚。靠近该引脚须接入 1uF 陶瓷电容到逻辑侧参考地 (GND1)。
8	GND₁	逻辑侧参考地。
9	GND ₂	总线侧参考地。
10	V _{ISOOUT}	隔离电源输出端,该引脚必须通过 1uF 电容接至 9 脚。应用时需连接至 15 脚。
11	NC	无功能引脚,可悬空。
12	NC	无功能引脚,可悬空。
13	В	RS485 总线 B 线引脚。
14	A	RS485 总线 A 线引脚。
15	V _{ISOIN}	隔离电源输入端,该引脚必须通过 0.1uF 电容接至 16 脚。应用时需连接至 10 脚。
16	GND ₂	隔离输出参考地。

极限额定值

下列数据是在自然通风,正常工作温度范围内测得(除非另有说明)。

参数	单位	
供电电压, Vcc	-0.3V to +6V	
A、B 间电压范围	-8V to +13V	
DE、TXD、RE、RXD 电压范围	-0.3V to +6V	
工作温度范围	-40°C to +105°C	
存储温度范围	−50°C to +125°C	
同次相组中	峰值温度 Tc≤250℃, 217℃以上时间最大为 60 s, 实际应用请参考	
回流焊温度	IPC/JEDEC J-STD-020D.3 标准。	

若超出"极限额定值"表内列出的应力值,可能会对器件造成永久损坏。长时间工作在极限额定条件下,器件的可靠性有可能会受到影响。所有电压值都是以参考地(GND)为参考基准。

推荐工作参数

符号	推荐	最小值	典型值	最大值	单位	
V _{CC}	供	电电压	4.75	5	5.25	
Vı	任一总线终端引肽	吨 压 (差模、共模)	-7		12	V
V _{IH}	高电平输入电压(TXD , DE , RE)				Vcc	V
V _{IL}	低电平输入电压	0		0.8		
1	松山中沙	驱动器	-60		60	A
los	输出电流	接收器	-8		8	mA
R _{IN}	差分输出	54	60		Ω	
T _A	工作	-40		105	$^{\circ}$	
-	传	渝速率			1000	Kbps

符 号	参数	数	测试	条件	最小值	典型值	最大值	单位
驱动器特性						<u>'</u>		
			空载		3.5			V
V_{OD}	差分驱动	动输出	R _L =540	Ω,图7	1.5	2.0		.,
			R _L =100	Ω , 图 7	2.0			V
ΔV_{OD}	驱动器差分输出	出电压变化量	R _L =540	Ω,图7			±0.2	V
Voc	驱动器共模	输出电压] 6	1		3	V
ΔV oc(ss)	驱动器共模输出	电压变化幅值] 6	-0.1		0.1	V
los	驱动器短	路电路	-7V≤V ₀	_{ouт} ≤12V		±110	±250	mA
R _{TXD}	内部 TXD .	上拉电阻				5.1		kΩ
R _{DE}	内部 DE	下拉电阻				5.1		kΩ
妾收器特性	•				1		<u>'</u>	
VIT(+)	正向差分输入	入阈值电压	-7 V ≤ V ₀	_{CM} ≤ +12 V			-10	mV
VIT(-)	负向差分输入	入阈值电压	-7 V ≤ V ₀	_{CM} ≤ +12 V	-200			mV
Vhys	回滞电压 (\	/ _{IT+} – V _{IT})	-7 V ≤ V ₀	_{CM} ≤ +12 V		20		mV
RID	差分输入队	差分输入阻抗(A,B)		_{CM} ≤ +12 V	96			kΩ
lı	输入电流(A,B引脚)		DE=0 , RE =0,	V _{OUT} =12V		190	250	uA
			V _{CC} =0 or 5.5V		-200	-110		uA
	RXD 高电平输出电压		Ι _{ουτ} = 20 μΑ, \	V _A - V _B = 0.2 V	Vcc - 0.1			V
Vон			I _{OUT} = 4 mA, \	$V_A - V_B = 0.2 \text{ V}$	Vcc - 0.4	Vcc - 0.2		V
.,	DVD /// that			V _A - V _B = -0.2 V			0.1	V
Vol	RXD 低电平	4 铜出电压	I _{OUT} = −4 mA, \	$V_A - V_B = -0.2 \text{ V}$			0.4	V
	<u>.</u> 性				·		<u>'</u>	
Icc	静态工作	 乍电流	DE=R	RE =0V		15	30	mA
	/			100Ω负载		60	80	mA
Icc	工作	电流	A、B间	54Ω负载		75	105	mA
			A、B引服	却对 GND			±15	KV
ESD	静电放电抗扰度	HBM 模式	其他	引脚			±2	KV
		接触放电模式	A、B引	却对 GND			±4	KV
EFT	群脉冲抗扰度	IEC61000-4-4	A、B引li	却对 GND			±2	KV
SURGE	雷击浪涌抗扰度	IEC61000-4-5	A、B引脚对	GND (共模)			±2	KV
				S485H			3000	VDC
	隔离	も 広	TDH54	1S485H			5000	VDC
VI-O	绝缘队	 且抗			1			GΩ
	隔窝甲					3		pF
CMTI	共模瞬变		TXD = V _{CC} or 0 V transient magnitu		25			kV/us

传输特性

符号	参数	测试条件	最小值	典型值	最大值	单位
-	传输速率	占空比 40% ~ 60%			1000	Kbps
T _{PHL} ,T _{PLH}	驱动器传输延时			100	200	ns
T _{PHL} -T _{PLH}	驱动器差分输出延时偏移	R _L = 54Ω,C _L = 50pF,图 8		30	100	ns
T_R, T_F	驱动器输出上升延、下降延		30	50	100	ns
T_{PHL}, T_{PLH}	接收器传输延时	C = 15pc 図 0		50	150	ns
T _{PHL} -T _{PLH}	接收器传输延时偏移	· C∟ = 15pF,图 9		15	50	ns
T_R, T_F	接收器输出上升延、下降延	C _L = 15pF,图 9		15		ns

物理特性

参数	数值	单位
重量	0.9(Тур.)	g

典型曲线

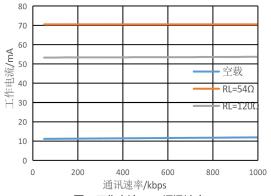


图 1.工作电流 vs. 通讯速率

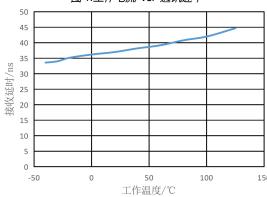
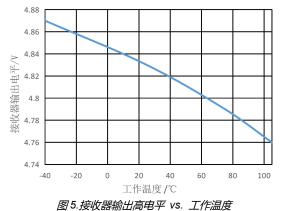



图 3.接收延时 vs. 工作温度

45 40 35 8U/至25 20 20 15 10 5 0 -50 0 50 100 150

图 2.发送延时 vs. 工作温度

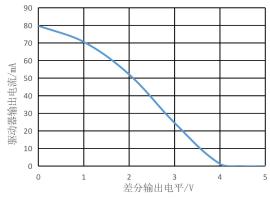


图 4.驱动器输出电流 vs. 差分输出电平

注意:测试条件负载电容包括测试探头及测试夹具寄生电容(无特殊说明)。测试信号上升及下降沿 < 6nS,频率 100KHz,占空比 50%。阻抗匹配 ZO = 54Ω (无特殊说明)。

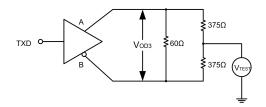


图 6. 共模输出测试电路

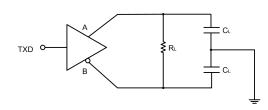
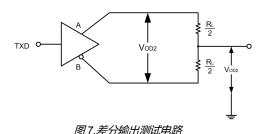



图 8.发送延时测试电路

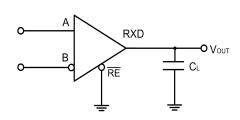
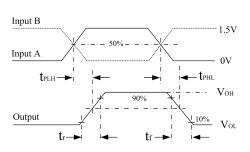



图 9.接收延时测试电路

工作描述及功能

TD(H)541S485H 是一款带隔离电源的半双工增强型 RS485 隔离收发器。每个收发器里除了包含一个隔离电源外,还包含一个驱动器和一个接收器。该收发器具备总线失效保护功能,当接收器输入开路、短路或者当总线处于空闲状态时,能保证接收器输出为高电平。TD(H)541S485H 采用 5VDC 单电源供电,整机可监控模块整体的工作状态,对输出大电流进行限制,以防止总线过载或短路对收发器造成不可恢复性损伤。

接收器输入滤波器:TD(H)541S485H接收器内部集成高性能输入滤波器,该滤波器能大大增强接收器对高速差分信号的噪声抑制能力。因此,接收器的传输延时也是由这个原因产生的。

总线失效保护:一般情况下,当-200mV<A-B<-10mV时,总线接收器将处于不确定状态。当总线处于空闲状态时该现象将会出现。总线失效保护可以保证,当接收器输入开路、短路,或总线接入端口匹配电阻时,接收器输出为高电平。TD(H)541S485H接收器阈值电压比较准确,且阈值电压到参考地至少还有10mV余量,这个特性能够保证即使总线差分电压为0V时,接收器输出电平为高,并且符合EIA/TIA-485标准±200mV的要求。

总线负载能力(256 节点):标准的 RS485 接收器输入阻抗定义为 12KΩ(1个单位负载)。一个标准的 RS485 驱动器可以驱动至少 32 个单位负载。 TD(H)541S485H 的总线接收器按 1/8 单位负载设计,其输入阻抗大于 96KΩ。因此,总线能允许接入更多的收发器(高达 256 个)。TD(H)541S485H 也可与其他 32 个单位负载的标准 RS485 收发器混合使用(接收器累计不能超过 32 个单位负载)。

低功耗 SHUTDOWN 模式: 当 \overline{RE} 输入高电平,DE 输入低电平时,收发器进入关断(SHUTDOWN)模式。当收发器进入关断模式时,其整体待机功耗降低。 \overline{RE} 、DE 可以短接,并通过同一个 I/O 进行控制。如果 \overline{RE} 输入高电平,DE 输入低电平保持时间小于 50nS,收发器无法进入到关断模式,若保持时间能保持至少 600ns,收发器将可靠进入到关断模式。

驱动器输出保护:TD(H)541S485H 内部集成驱动器短路(或过流)保护模块。当总线出现错误或驱动器短路时,该模块能将驱动器输出电流限制一定限值内。

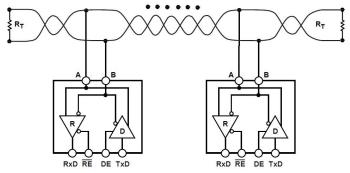


图 10.典型应用电路(半双工网络拓扑结构)

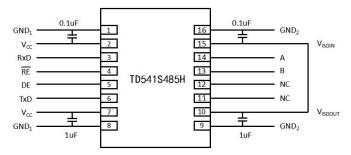


图 11.典型应用 PCB layout

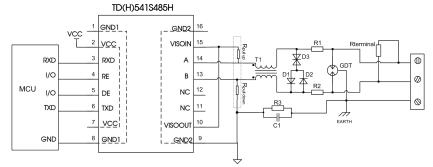


图 12.端口保护推荐电路

参数说明:

标号	选型	标号	选型
R3	1ΜΩ	R1, R2	2.7Ω/2W
C1	1nF, 2kV	D1, D2	1N4007
T1	ACM2520-301-2P	D3	SMBJ8.5CA
GDT	B3D090L	R _{terminal}	120Ω

由于模块内部 A/B 线自带 ESD 保护,因此用户一般在应用于环境良好的场合时无需再加 ESD 保护器件。但如果应用环境比较恶劣(如高压电力、雷击等环境),那么建议用户一定要在模块 A/B 线端外加 TVS 管、共模电感、气体放电管、屏蔽双绞线或同一网络单点接大地等保护措施。因此,推荐应用电路如图 12 所示,推荐参数如上表所示。推荐电路图和参数值只做参考,请根据实际情况来确定是否需要电路图中的器件和适当的参数值。

注:R_{terminal} 根据实际应用情况选择。

使用建议

- ① 隔离电源输出引脚 Viscout 需要通过一系列电容接至 Viscin,除第④条所述的上下拉功能外,该电源不推荐用作其他用途,否则可能会导致总线电压不满足通讯要求,而导致通讯失败。
- ② DE 与RE引脚不支持悬空,如该引脚不接入控制器,该引脚推荐通过30kΩ的下拉电阻接至GND,以保持该节点只处于接收状态,不影响总线。
- ③ 在任何时候都不应该将控制器连接 DE, RE, TXD 的引脚设置为开漏输出的状态, 否则会导致不确定的后果。
- ④ 为保持 A-B 总线空闲稳定性,需要在总线端至少一处节点将 A 上拉至 V_{ISOIN} ,将 B 下拉至 GND2,同时整体网络的上下拉电阻其并联值为 $380\Omega\sim420$ $\Omega(0.2W)$ 。

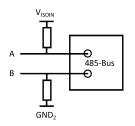


图 13.上下拉电阻典型接法

⑤ TD(H)541S485H 对的 RXD 输出只兼容 5V 系统,如果 I/O 口为 3.3V 电平且不支持 5V 输入可参照以下推荐电路:

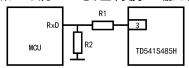
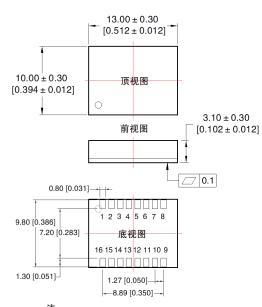


图 14. 匹配单片机系统接法

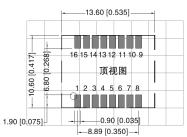
常规降压电路电阻分压计算为:

$$R1 = \frac{V_{out} - V_{in}}{V_{in}}R2$$

其中 R1,R2 为所接分压电阻值, V_{out} 为 TD(H)541S485H 的输出电压, V_{in} 为 MCU 的 RXD 输入电压。推荐值为 R1=750 Ω ,R2=2k Ω 。

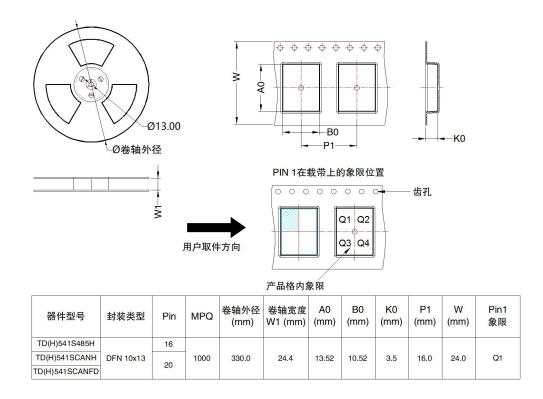

- ⑥ 产品不支持热拔插。
- ⑦ TXD 外部输入如驱动能力不足应视情况添加上拉电阻。
- ⑧ 此产品焊接规范设计可参考《IPC7093》,焊接指导参照《DFN 封装产品热风枪焊接作业指南》、《DFN 封装产品焊接指南》。

订购信息


产品型号	封装	引脚数	丝印	包装
TD541S485H	DFN	16	TD541S485H	1K/盘
TDH541S485H	DFN	16	TDH541S485H	1K/盘

封装信息

第三角投影 💮



注: 尺寸单位: mm[inch] 未标注公差: ±0.10[±0.004]

注: 栅格距离 2.54*2.54mm

引 脚 方 式						
引脚	引脚名称	引脚	引脚名称			
1	GND1	9	GND2			
2	VCC	10	VISOOUT			
3	RXD	11	NC			
4	RE	12	NC			
5	DE	13	В			
6	TXD	14	Α			
7	VCC	15	VISOIN			
8	GND1	16	GND2			

广州金升阳科技有限公司

地址:广东省广州市黄埔区科学城科学大道科汇发展中心科汇一街5号

电话: 86-20-38601850 传真: 86-20-38601272 E-mail: <u>sales@mornsun.cn</u>