

降压型非隔离 LED 驱动控制芯片

概述

PM2115 是一款高精度降压型的 LED 恒流驱动 芯片。芯片工作在电感电流临界模式,适用于全输入电压的非隔离降压型 LED 恒流电源。

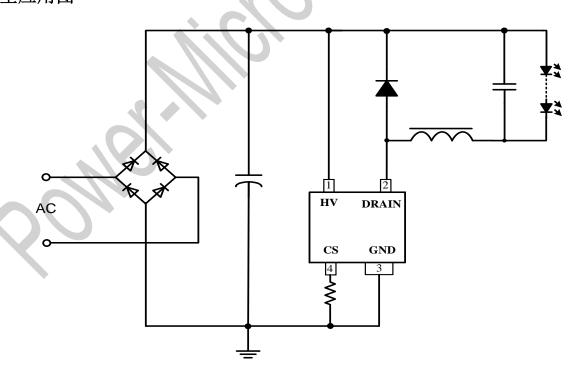
PM2115 芯片内部集成 500V 功率开关,采用专利的退磁检测技术和高压供电技术,无需 VCC 电容和启动电阻,使其外围器件更简单,节约了系统的成本和体积。

PM2115 芯片带有高精度的电流采样电路,同时采用了专利的恒流控制技术,实现高精度的 LED 恒流输出和优异的线电压调整率。芯片工作在电感电流临界模式,输出电流不随电感量和 LED 工作电压的变化而变化,实现优异的负载调整率。

PM2115 具有多重保护功能,包括 LED 短路保护, 欠压保护,芯片温度过热调节功能等。

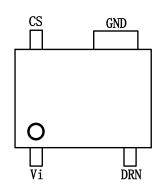
PM2115 采用 SOT33-4 封装。

特点


- ► 无VCC电容
- ▶ 高压供电,无启动电阻
- ▶ 内部集成500V功率管
- ▶ 宽电压输入电压
- ▶ ±5% LED输出电流精度
- ▶ 电感电流临界模式
- ▶ LED短路保护
- ▶ 过温补偿

应用

- LED 灯管
- LED 球泡灯
- LED 筒灯
- LED 射灯c


恒流源...

典型应用图

引脚封装

SOT33-4 封装

引脚描述

引脚编号	引脚名称	描述
1	VI	芯片高压供电端
2	DRN	内部高压功率管漏极
3	GND	芯片地
4	CS	电流采样端

定购信息

定购型号	温度范围	封装	包装
PM2115	-40℃~105℃	SOT33-4	15,000 颗/盘 编带

推荐工作范围

应用参数	应用范围	单位
最大输出电流	150mA	mA
最小输出电压	15	V

极限参数⁽¹⁾⁽²⁾

符号	脚位	描述	范围	单位
DRN	2	内置高压MOSFET漏极	-0.3~500	V
VI	1	芯片高压供电端	-0.3~500	V
CS	4	电流采样端	-0.3~5	V
I _{DS}	2	漏极最大电流 @ T」=100℃	300	mA
θ_{JA}		热阻(结温-环境)	170	°C/W
Tj		最大工作结温	-40~150	$^{\circ}$
Tstg		存储温度范围	-55~150	$^{\circ}$
ESD		静电 (人体模式)	2	kV

说明:

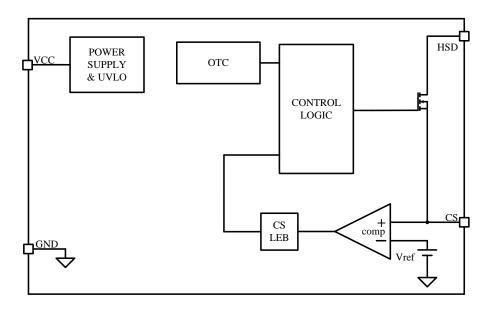
- (1) 最大极限值是指超出该工作范围,芯片可能损坏。电气参数定义了器件在工作范围内并且在保证特定性能指标的测试 条件下的直流和交流电参数规范。对于未给定上下限值的参数,该规范不予保证其精度,但其典型值反映了器件性能。
- (2) 无特别说明,所有的电压以GND作为参考。

电气参数⁽³⁾

(无特别说明外, Ta=25°C)

符号	参数	测试条件	最小值	典型值	最大值	单位	
电源供电部	电源供电部分						
I _{OP}	工作电流	Fsw=5kHz		150		uA	
电流采样							
V_{REF}	平均电流基准			400		mV	
T_LEB	电流采样消隐时间			500		ns	
T _{DELAY}	关断延时时间			200		ns	
振荡器							
T _{OFF_MAX}	最大关断时间			300		us	
T _{OFF_MIN}	最小关断时间			2.5		us	
T _{ON_MAX}	最大开通时间			45		us	

降压型非隔离 LED 驱动控制芯片



符号	参数	测试条件	最小值	典型值	最大值	单位
MOSFET						
V_{DS_BD}	内部开关管最大耐压	$V_{GS} = 0 V$	500			V
R _{DSON}	下拉管导通电阻			16		Ω
I _{DS}	最大电流		300			mA
过温补偿						
T _{CP}	过温补偿 ⁽⁴⁾			140		${\mathbb C}$

说明:

- (3) "电气参数"典型值由设计和测试统计保证,最小值和最大值由测试统计保证。
- (4) 数据是基于PME实验室测试所得结果。

芯片内部方框图

降压型非隔离 LED 驱动控制芯片

应用信息

PM2115 是一款专用于 LED 照明的恒流驱动芯片,应用于非隔离降压型 LED 驱动电源。采用专利的恒流架构和控制方法,芯片内部集成500V 功率开关,只需要极少的外围组件就可以达到优异的恒流特性。无需 VCC 电容和启动电阻,系统成本极低。

启动

系统上电后,母线电压通过 HV 脚对芯片内部供电,当内部供电电压达到芯片开启阈值时,芯片内部控制电路开始工作。芯片正常工作时,所需的工作电流仍然通过内部的 JFET 对其提供。

恒流控制,输出电流设置

芯片逐周期检测电感的峰值电流, CS 端连接到内部的峰值电流比较器的输入端,与内部 400mV 阈值电压进行比较, 当 CS 电压达到内部检测阈值时, 功率管关断。

电感峰值电流的计算公式为:

$$I_{\rm PK} = \frac{400}{R_{\rm CS}} (mA)$$

其中,RCS 为电流采样电阻阻值。

CS 比较器的输出还包括一个 500ns 前沿消隐时间。

LED 输出电流计算公式为:

$$I_{LED} = \frac{I_{PK}}{2}$$

其中, IPK 是电感的峰值电流。

储能电感

PM2115 工作在电感电流临界模式,当功率管导通时,流过储能电感的电流从零开始上升,导通时间为:

$$t_{on} = \frac{L \times I_{PK}}{V_{IN} - V_{LED}}$$

其中, L 是电感量; IPK 是电感电流的峰值; VIN 是经整流后的母线电压; VLED 是输出 LED 上的电压。

当功率管关断时,流过储能电感的电流从峰值开始往下降,当电感电流下降到零时,芯片内部逻辑再次将功率管开通。功率管的关断时间为:

$$t_{\rm off} = \frac{L \times I_{PK}}{V_{\rm LED}}$$

储能电感的计算公式为:

$$L = \frac{V_{LED} \times (V_{IN} - V_{LED})}{f \times I_{PK} \times V_{IN}}$$

其中,f为系统工作频率。PM2115的系统工作频率和输入电压成正比关系,设置 PM2115系统工作频率时,选择在输入电压最低时设置系统的最低工作频率,而当输入电压最高时,系统的工作频率也最高。

PM2115 设置了系统的最小退磁时间和最大退磁时间,分别为 2.5us 和 280us。由 tOFF 的计算公式可知,如果电感量很小时,tOFF 很可能会小于芯片的最小退磁时间,系统就会进入电感电流断续模式,LED 输出电流会背离设计值;而当电感量很大时,tOFF 又可能会超出芯片的最大退磁时间,这时系统就会进入电感电流连续模式,输出 LED 电流同样也会背离设计值。所以选择合适的电感值很重要。

保护功能

PM2115 内置多种保护功能,包括 LED 短路保护, 欠压保护,芯片温度过热调节等。

当 LED 短路时,系统工作在 3.5KHz 低频,所以 功耗很低。

过温调节功能

PM2115 具有过热调节功能,在驱动电源过热时逐渐减小输出电流,从而控制输出功率和温升,使电源温度保持在设定值,以提高系统的可靠性。芯片内部设定过热调节温度点为 140℃。`

PCB 设计

在设计 PM2115 PCB 时,需要遵循以下指南: CS 采样电阻

降压型非隔离 LED 驱动控制芯片

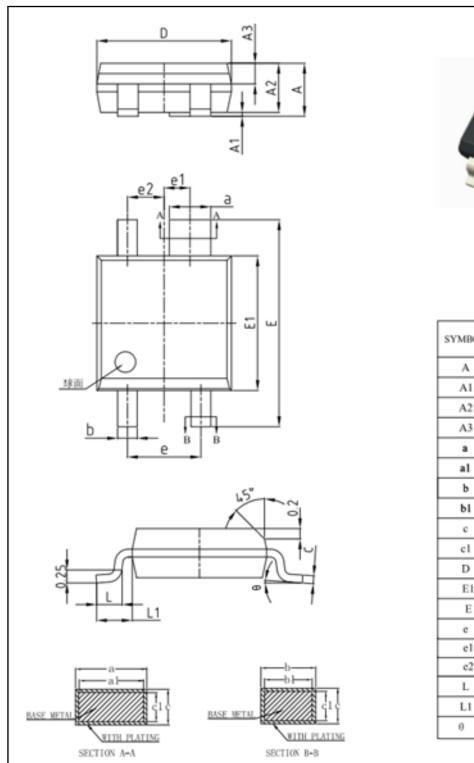
电流采样电阻的功率地线尽可能短,且要和芯片 的地线及其它小信号的地线分头接到母线电容 的地

HV 引脚

在焊接允许的情况下,HV 引脚尽量远离 CS 引脚和其他低压引脚

功率环路的面积

减小功率环路的面积,如功率电感、功率管、母 线电容的环路面积,以及功率电感、续流二极管、 输出电容的环路面积,以减小 EMI 辐射。


GND 引脚

增加 GND 引脚的铺铜面积以提高芯片散热。

Page 6 of 8 Power-Micro Semiconductor DS _PM2115_V1.0

封装信息

SYMBOL	MILLIMETER			
SIMBOL	MIN	NOM	MAX	
A	_	_	1.15	
Al	0.05	_	0.15	
A2	0.90	0.95	1.00	
A3	0.35	0.40	0.45	
а	0.78	_	0.86	
al	0.77	0.80	0.83	
ь	0.36	_	0.44	
ы	0.35	0.38	0.41	
c	0.15	_	0.19	
cl	0.14	0.15	0.16	
D	2.50	2.60	2.70	
E1	2.50	2.60	2.70	
Е	3.80	4.00	4.20	
e	1.42 BSC			
el	0.50 BSC			
e2	0.71 BSC			
L	0.40	0.50	0.60	
LI	0.70REF.			
0	0	_	8*	

版本信息

修订日期	版本	版本升级原因
2017-3-10	V1.0	首版

P.S.: Power Micro-Electronics Tech reserves the final right to interpret the terms and conditions of this content.