High Voltage Buck LED Driver with Dimming Control

General Description

The RT8406 is a current-mode LED driver supporting wide input voltage range from 10V to 60V. With internal adjustable operating frequency 135kHz and 270kHz, the size of the external inductor and input/output capacitors can be minimized at high operating frequency. High efficiency is achieved by a 100mV current sensing control. In addition, the RT8406 features low standby power. LED dimming control can be done from either analog or PWM signal and share the same pin. The RT8406 provides thermal shutdown to prevent the device from overheat. The RT8406 is available in the SOP-8 package.

Ordering Information

RT8406

Package Type

S : SOP-8

-Lead Plating System

G : Green (Halogen Free and Pb Free)

Note :

Richtek products are :

- ▶ RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020.
- Suitable for use in SnPb or Pb-free soldering processes.

Features

- 1% Low Dimming Precision
- Low Standby Power Consumption
- High Input Voltage : VIN up to 60V
- Current-Mode PWM Control
- 135kHz/270kHz Adjustable Switching Frequency
- Analog and PWM Dimming Control and Share the Same Pin
- Under-Voltage Lockout
- Cycle-by-Cycle Current Limitation
- Thermal Shutdown
- RoHS Compliant and Halogen Free

Applications

• DC-DC LED Lighting Driver

Marking Information

RT8406
GSYMDNN
•

RT8406GS : Product Number

YMDNN : Date Code

Pin Configuration

Copyright©2017 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

Typical Application Circuit

Suggested Component Values

C4 (nF)	C5 (μ F)	C6 (pF)	C7 (μ F)	R2 (Ω)
1	1	47 Optional	1	22 Optional

Switch Frequency	C3 (nF)	R4 (k Ω)
270kHz	0.68	1
135kHz	1	2

Copyright@2017 Richtek Technology Corporation. All rights reserved. **RICHTEK** is a registered trademark of Richtek Technology Corporation.

Functional Pin Description

Pin No.	Pin Name	Pin Function		
1	DIM	Analog or PWM dimming control input.		
2	VC	PWM loop compensation node.		
3	CS	MOSFET current sense input.		
4	GATE	Gate driver output for external MOSFET switch.		
5	GND	Ground of the controller.		
6	CREG	Regulator output.		
7	ISN	LED current sense input. Voltage threshold between VCC and ISN is100mV.		
8	vcc	Supply voltage input. The controller will be enabled when VDD exceeds VTH_ON and disabled when VDD is lower than VTH_OFF.		

Functional Block Diagram

Absolute Maximum Ratings (Note 1)

VCC, ISN to GND	0.3V to 65V
CREG, GATE to GND	0.3V to 20V
DIM, VC, CS to GND	0.3V to 6V
• Power Dissipation, $P_D @ T_A = 25^{\circ}C$	
SOP-8	0.53W
Package Thermal Resistance (Note 2)	
SOP-8, θ _{JA}	188°C/W
SOP-8, θ _{JC}	47°C/W
• Junction Temperature	150°C
Lead Temperature (Soldering, 10 sec.)	260°C
Storage Temperature Range	65°C to 150°C
ESD Susceptibility (Note 3)	
HBM (Human Body Model)	2kV

Recommended Operating Conditions (Note 4)

Supply Input Voltage, VCC	12V to 60V
Junction Temperature Range	$-40^{\circ}C$ to $125^{\circ}C$
Ambient Temperature Range	$-40^{\circ}C$ to $85^{\circ}C$

Electrical Characteristics

(V_{CC} = 12V, C_{IN} = 1\mu F, T_A = 25^{\circ}C, unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
VCC Section	•		·			
Rising UVLO Threshold Voltage	VTH_ON			10		V
Falling UVLO Threshold Voltage	VTH_OFF			8		V
Creg UV				7.8		
Supply Current	lvcc				1.2	mA
Shutdown Current	I _{SD}			60		μA
Current Sense Section						
Input Current of ISN Pin	lisn	VISN = 60V		20		μA
Mean Current Sense Threshold Voltage		VCC – ISN DIM = 3V		100		mV
Current Limit				150		mV
Dimming Section	•					
Dimming High Threshold Voltage	Vdim_h			2.8		V
Dimming Enabled Voltage	Vdim_en			0.35		V
Dimming Disabled Voltage	VDIM_DIS			0.3		V
Dimming Enabled Hysteresis	VDIM_Hys			50		mV
DIM sourcing Current	IDIM			10		μA

Copyright©2017 Richtek Technology Corporation. All rights reserved. **RICHTEK** is a registered trademark of Richtek Technology Corporation.

RICHTEK

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Timing Control Section						
High Switching Frequency	fsw_H	$R_{LP} = 1k\Omega$, $C_{LP} = 680pF$		270		kHz
Low Switching Frequency	fsw_L	$R_{LP} = 2k\Omega, C_{LP} = 1nF$		135		kHz
Leading Edge Blanking time	tLEB			150		ns
Shutdown Delay				2		S
Gate driving Section		-				
Rising Time	tR	VCC = 15V, CL = 1nF (10%~90%)		21		ns
Falling Time	tF	VCC = 15V, CL = 1nF (90%~10%)		18		ns
Gate Output Clamping Voltage	VCLAMP	VCC = 15V		10		V
Internal Pull Low Resistor	Rgate	VCC = 15V		40		kΩ
Over-Temperature Protection (OTP) Section						
OTP Temperature Threshold	Тотр			150		°C
OTP Temperature Hysteresis	TOTP-Hys			20		°C

Note 1. Stresses beyond those listed "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

- Note 2. θ_{JA} is measured under natural convection (still air) at $T_A = 25^{\circ}C$ with the component mounted on a high effectivethermal-conductivity four-layer test board on a JEDEC 51-7 thermal measurement standard. θ_{JC} is measured at the exposed pad of the package.
- Note 3. Devices are ESD sensitive. Handling precaution is recommended.

Note 4. The device is not guaranteed to function outside its operating conditions.

Application Information

LED Current Setting

 $I_{LED} = \frac{100 \text{mV}}{100 \text{mV}}$ **R**1

Inductor Selection

Recommended : Inductor current ripple = $\pm 30\%$

$$L1 = \frac{V_{LED}}{2 \times I_{LED} \times 30\%} \times (1 - \frac{V_{LED}}{V_{IN}}) \times \frac{1}{f_{SW}}$$

Current Limit Setting

Recommended : I_{OCP} = 150% x I_{LED} $I_{OCP} = \frac{150mV}{V}$ R3

Dimming Application

Analog DIM: 0.3 to 2.8V

PWM DIM : Recommended PWM_H = 3.3V, PWM_L = 0V, Freq. = 500 to 1kHz.

Non-DIM : Connect a 47pF cap (optional).

Thermal Considerations

The junction temperature should never exceed the absolute maximum junction temperature T_{J(MAX)}, listed under Absolute Maximum Ratings, to avoid permanent damage to the device. The maximum allowable power dissipation depends on the thermal resistance of the IC package, the PCB layout, the rate of surrounding airflow, and the difference between the junction and ambient temperatures. The maximum power dissipation can be calculated using the following formula :

$$\mathsf{P}_{\mathsf{D}(\mathsf{MAX})} = (\mathsf{T}_{\mathsf{J}(\mathsf{MAX})} - \mathsf{T}_{\mathsf{A}}) / \theta_{\mathsf{J}\mathsf{A}}$$

where $T_{J(MAX)}$ is the maximum junction temperature, T_A is the ambient temperature, and θ_{JA} is the junction-to-ambient thermal resistance.

For continuous operation, the maximum operating junction temperature indicated under Recommended Operating Conditions is 125°C. The junction-to-ambient thermal resistance, θ_{JA} , is highly package dependent. For a SOP-8, the thermal resistance, θ_{JA} , is 188°C/W on a standard JEDEC 51-7 high effective-thermal-conductivity four-layer test board. The maximum power dissipation at $T_A = 25^{\circ}C$ can be calculated as below :

 $P_{D(MAX)} = (125^{\circ}C - 25^{\circ}C) / (188^{\circ}C/W) = 0.53W$ for a SOP-8 package.

The maximum power dissipation depends on the operating ambient temperature for the fixed $T_{J(MAX)}$ and the thermal resistance, θ_{JA} . The derating curves in Figure 1 allows the designer to see the effect of rising ambient temperature on the maximum power dissipation.

Figure 1. Derating Curve of Maximum Power Dissipation

Copyright @2017 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation. www.richtek.com

Outline Dimension

Cumhal	Dimensions In Millimeters			s In Inches
Symbol	Min	Max	Min	Max
А	4.801	5.004	0.189	0.197
В	3.810	3.988	0.150	0.157
С	1.346	1.753	0.053	0.069
D	0.330	0.508	0.013	0.020
F	1.194	1.346	0.047	0.053
Н	0.170	0.254	0.007	0.010
I	0.050	0.254	0.002	0.010
J	5.791	6.200	0.228	0.244
М	0.400	1.270	0.016	0.050

8-Lead SOP Plastic Package

Richtek Technology Corporation

14F, No. 8, Tai Yuen 1st Street, Chupei City Hsinchu, Taiwan, R.O.C. Tel: (8863)5526789

Richtek products are sold by description only. Richtek reserves the right to change the circuitry and/or specifications without notice at any time. Customers should obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries.

Datasheet Revision History

Version	Date	Item	Description
P00	2016/4/26		First Edition
P01	2017/12/19	Headline General Description Ordering Information Features Applications Marking Information Pin Configuration Typical Application Circuit Functional Pin Description Functional Block Diagram Absolute Maximum Ratings Electrical Characteristics Application Information	Modify

Copyright ©2017 Richtek Technology Corporation. All rights reserved. **RICHTEK** is a registered trademark of Richtek Technology Corporation.